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What is probabilistic model checking?

Probabilistic model checking...

— is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems



Why formal verification?

Errors in computerised systems can be costly...

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Self-destructs 37secs Software “glitch”

Intel (eventually) offers  into maiden launch. found in anti-lock
to replace faulty chips. Cause: uncaught braking system.

Estimated loss: $475m  overflow exception. 185,000 cars recalled.

. Why verify?

- “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]
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Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes
. CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
. IEEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)
— Randomised algorithms for anonymity, contract signing, ...




Why probability?

- Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance



Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

- To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion



Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?




Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Discrete Markov chains processes (MDPs)
time (DTMCs) Simple stochastic
games (SMGs)
Probabilistic timed
Conti Continuous-time automata (PTASs)
onttilrlr]]léous Markov chains

(CTMCs)

Interactive Markov
chains (IMCs)
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Overview

Introduction
Model checking for discrete-time Markov chains (DTMCs)
— DTMCs: definition, paths & probability spaces
— PCTL model checking
— Costs and rewards
— Case studies: Bluetooth, (CTMC) DNA computing
PRISM: overview
— modelling language, properties, GUI, etc
PRISM: recent developments
— Multi-objective model checking
— Parametric models
— Probabilistic times automata, case study: FireWire
— Stochastic games, example: smartgrid protocol

- Summary
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Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

- Transitions

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

13



Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;;,P,L) where:
— S is a finite set of states (“state space”)
— Si,i¢ € S is the initial state
— P:S xS — [0,1]is the transition probability matrix
where 2., P(s,s’) = 1 forall s € S

— L:S — 2APjs function labelling states with atomic
propositions

Note: no deadlock states
— i.e. every state has at least
one outgoing transition
— can add self loops to represent
final/terminating states

14



Paths and probabilities

- A (finite or infinite) path through a DTMC
— is a sequence of states s,5,;5,55... such that P(s;,s;,;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: o

-----

— sample space: Path(s) = set of all 5’;3::

infinite paths from a state s
— events: sets of infinite paths froms 7
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)

15



Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family Z of subsets of Q
closed under complementation and countable union, i.e.:

— if A € Z, the complement Q \ Aisin X
— if A, € 2 fori € N, the union U; A, is in 2
— the empty set D isin X

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, 2, Pr)
— Q is the sample space
— 2 is the set of events: o-algebra on Q
— Pr: % — [0,1] is the probability measure:
Pr(QQ) = 1 and Pr(u; A) = Z; Pr(A;) for countable disjoint A,

16



Probability space over paths

- Sample space Q = Path(s)

set of infinite paths with initial state s

- Event set 2,5

— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpath(s) 1S the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P,(w) = P(s,s;) - ... - P(s,_¢,S,,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths- w
— Pry extends uniquely to a probability measure Prg:3p,,—[0,1]

- See [KSK76] for further details

17



Probability space - Example

Paths where sending fails the first time
— W = 5,55,
— C(w) = all paths starting sys;s,...
— Po(w) = P(sq,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = Po(w) = 0.01

Paths which are eventually successful and with no failures
— C(50S153) U C(5051571S3) U C(5(5:515153) U ...
— Pro( C(syS;53) U C(545:5:53) U C(555:5151S3) U ...)
= P,5(50S153) + P.(505151S3) + Pp(SpS15151S3) + ...
=1-0.98 + 1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

18



PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_y o5 [ true U=10 deliver ]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

19



PCTL syntax

W is true with

PCTL syntax: / probability ~p

—¢ =truelaldAd| [P (W] (state formulas)
- =X | dUkd | dUD (path formulas)
T o A : T
“ ” ..... “bou nded “ ”
: “‘next” i i i ‘until
T Coioountl” T

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- A PCTL formula is always a state formula
— path formulas only occur inside the P operator

20




PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the DTMC (S,s,,;,,P,L):

— SEa < a € L(s)
—SE O AP, < sE¢, and s E= ¢,
— s E —¢ < s E ¢ is false
- Examples
— S5 k= succ

— s, E try A —fail

21



PCTL semantics for DTMCs

- Semantics of path formulas:

— for a path w = s45;5,... in the DTMC:

—wEXd S S E

— wkE ¢, Uskdp, < 3Ti<ksuchthats, = b, and Vj<i, s, = b,
-~ wWEO, Ud, < Jk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

22



PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [ @ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s E P_g,: [ X fail ] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [wW] < Prob(s, ) ~p
— where: Prob(s, @) = Pr.{ w € Path(s) | w = @ }
— (sets of paths satisfying @ are always measurable [Var85])

L ; 23



More PCTL...

- Usual temporal logic equivalences:

— false = —true
— ¢ VP, = (0D A D)
— ¢ > b=, vV P,

—Fd=0d=truel ¢

-Godp=0¢ = —~(F —~¢)
— bounded variants: F=k ¢, G=k ¢

- Negation and probabilities

— e.g. —'P>p[¢1 Ucbz]Eng [P, U b, |
—eg.P.,[Gd]=P__ [F—d]

(false)
(disjunction)
(implication)

(eventually, “future”)
(always, “globally”)

24



Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

- A PCTL property P_, [ @ ] is...
— qualitative when p is either O or 1
— quantitative when p is in the range (0,1)

- P.o[F d1is identical to EF ¢
— there exists a finite path to a ¢-state

- P_,[Fd]is (similar to but) weaker than AF ¢
— e.g. AF “tails” (CTL) #= P_, [ F “tails” ] (PCTL)

25



Quantitative properties

Consider a PCTL formula P_, [ Y ]
— if the probability is unknown, how to choose the bound p?

- When the outermost operator of a PTCL formula is P
— we allow the form P_, [ @ ]
— “what is the probability that path formula ¢ is true?”

Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

PRISM [21]

—o— ) =0.01
—a— ) =0.02
—a— ) =0.03
—— L =0.04
Analytical [7]
~%-e- 1-0.01

Example
— P_, [ F err/total>0.1 ]
— “what is the probability

Probability

that 10% of the NAND i i:g‘gg
gate outputs are erroneous?’ - 4- 1=0.04

Number of restorative stages 26



PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(S,s,,;,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check thats E d V s €S, i.e. Sat(dp) = S
— sometimes, just want to know if s,... = &, i.e. if 5, ., € Sat(d)

- Sometimes, focus on quantitative results
— e.g. compute result of P=? [ F error ]
— e.g. compute result of P=? [ F=k error ] for 0<k<100

27



PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_y 45 [ —fail U succ]

- For the non-probabilistic operators:

— Sat(true) = S
— Sat(a) ={seS|ael(s)}

— Sat(—$) = S\ Sat(d) / \

— Sat(d, A d,) = Sat(d,) N Sat(d,) & Pooos [+ U -]

. For the P~p [ @ ] operator - %D B é@

— need to compute the
probabilities Prob(s, ) © ©
for all statess € S fail fail

— focus here on “until”
case: Y = ¢, U §, 58

b




PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) forall s € S
First, identify all states where the probability is 1 or O

— Sves = Sat(P.; [, U ¢, ])

— S"o = Sat(P_o [, U, ]
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S"°) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S"° (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
29



PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if se S
Prob(s, ¢, U d,) = | 0 if se S™
ZP(s,s')- Prob(s', ¢, U ¢,) otherwise

s'eS
N

— can be reduced to a system in |S?| unknowns instead of |S|
where S = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.g. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)

30



PCTL until - Example

- Example: P_,s[ma UDb]

31



PCTL until - Example

. Example: P_yg[-aUDb]

SnO =
Sat(P_, [-a U b ])
1 0.3
a ................................
Syes —
0.1 07 Sat(P., [-aUb])

32



PCTL until - Example

Example: P_,s[-aUDb]

Sno —
Sat(P_, [-a U b ])

Let x; = Prob(s, —a U b)

i a
® SOIVe ; Syes _
0.1 07 Sat(P., [-aUb])
—(0
X; = X3 =0 :

Xo = 0.1%,+0.9x, = 0.8
Prob(-aUb) =x=1[0.8,0, 89,0, 1, 1]

Sat(P.og [ ~aUb]) = {5,545} 33



PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— &, U=k d, : k matrix-vector multiplications, O(k|S|?)
— &, U &, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]

34



Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P_,[...] always contains a single temporal operator)
— (not covered in this lecture)

- Another direction: extend DTMCs with costs and rewards...

35



Costs and rewards

We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

36



Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

37



DTMC reward structures

For a DTMC (S,s;,;,P,L), a reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
— L:S XS - R_,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and ris zero
(equivalently, p is zero and  returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition 38



PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

expected :
. reward is ~r

— wherer e R_,, ~ € {<,>,<,2}, ke N

R.. [ - ] means “the expected value of - satisfies ~r”

39



Types of reward formulas

Instantaneous: R_, [ I7¢ ]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

+ Cumulative: R_, [ C=K]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

Reachability: R_. [F ¢ ]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”

— e.g. “the expected time for the algorithm to terminate”

40



Reward formula semantics

Formal semantics of the three reward operators
— based on random variables over (infinite) paths

Recall:
-sEP,[Ww] & Pry{wePath(s) | w=Y}~p

For a state s in the DTMC:
—sER_[IFK] < Exp(s, X_) ~r
—sER_[C=k] & Exp(s, Xc) ~r
—sSER,[F®] < Exp(s, Xpe) ~ T

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

41



Reward formula semantics

- Definition of random variables:
— for an infinite path w= s4s,5,...

X|=k ((D) = E(Sk )

Y (w) - 0 ifk=0
C<k - Z::o] E(Si)"‘L(Si’SiH) otherwise

0 if s, € Sat(d)
Xep(W) =1 oo if s. ¢ Sat(e) for alli> 0
i Zikjf p(s;)+(s,s,,) otherwise

— where kd, =min{ j | S; F $ }

42



Model checking reward properties

Instantaneous: R_, [ I7¢ ]
- Cumulative: R_. [ C=t]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

Reachability: R_, [ F ¢ ]
— similar to computing until probabilities
— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

For more details, see e.g. [KNPO7a]

43



PCTL model checking summary...

Introduced probabilistic model checking for DTMCs
— discrete time and probability only
— PCTL model checking via linear equation solving
— LTL also supported, via automata-theoretic methods

. Continuous-time Markov chains (CTMCs)

— discrete states, continuous time
— temporal logic CSL

— model checking via uniformisation, a discretisation of the
CTMC

Markov decision processes (MDPs)

— add nondeterminism to DTMCs
— PCTL, LTL and PCTL* supported
— model checking via linear programming

44



PRISM

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs

Construction/analysis of probabilistic models...

— discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, ...

Simple but flexible high-level modelling language
— based on guarded commands; see later...

Many import/export options, tool connections
— in: (Bio)PEPA, stochastic tr-calculus, DSD, SBML, Petri nets, ...
— out: Matlab, MRMC, INFAMY, PARAM, ...

45



Model checking for various temporal logics...
— PCTL, CSL, LTL, PCTL*, rPATL, CTL, ...
— quantitative extensions, costs/rewards, ...

- Various efficient model checking engines and techniques

— symbolic methods (binary decision diagrams and extensions)
— explicit-state methods (sparse matrices, etc.)

— statistical model checking (simulation-based approximations)

— and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

Graphical user interface
— editors, simulator, experiments, graph plotting

See: http://www.prismmodelchecker.org/
— downloads, tutorials, case studies, papers, ...

46



PRISM modelling language

Simple, textual, state-based modelling language
— used for all probabilistic models supported by PRISM
— based on Reactive Modules [AH99]
Language basics
— system built as parallel composition of interacting modules
— state of each module given by finite-ranging variables
— behaviour of each module specified by guarded commands
. annotated with probabilities/rates and (optional) action label
— transitions are associated with state-dependent probabilities
— interactions between modules through synchronisation

[send] (s=2) -> p,.. : (s'=3)&(lost'=lost+1) + (1-p,,..) : (s'=4);

< > < > — < > ——
action guard probability update probability update

47



Simple example

dtmc

module M1

x :[0..3] init O;

[a] x=0 -> (X' =1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’' =3);
endmodule

module M2

y : [0..3] init O;

[a] y=0 -> (y' =1);

[b] y=1 -> 0.4 :(y=2) + 0.6 : (y =3);
endmodule

48



Costs and rewards

We augment models with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:
— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we consistently use the terminology “rewards” regardless

Properties (see later)
— reason about expected cumulative/instantaneous reward

49



Rewards in the PRISM language

rewards “total_queue_size” rewards “time”
true : queuel +queue?2; true : 1;
endrewards endrewards
(instantaneous, state rewards) (cumulative, state rewards)
rewards “power”
rewards "dropped"” sleep=true : 0.25;
[receive] g=g_max : 1; sleep=false : 1.2 * up;
endrewards [wake] true : 3.2;
endrewards

(cumulative, transition rewards)
(g = queue size, g_max = max.
queue size, receive = action label)

(cumulative, state/trans. rewards)
(up = num. operational components,
wake = action label)

50



PRISM - Property specification

- Temporal logic-based property specification language
— subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...

- Simple examples:
— P_g o1 [ F “crash” ] - “the probability of a crash is at most 0.01”
— S_0.999 [ “Up” ] - “long-run probability of availability is >0.999

”

Usually focus on quantitative (numerical) properties:

— P_, [ F “crash” ]
“‘what is the probability et
of a crash occurring?”

— then analyse trends in
quantitative properties
as system parameters vary

Probability of choosing X

«alo
13
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PRISM - Property specification

Properties can combine numerical + exhaustive aspects

— P2 [ F=10 “fail” ] - “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

— P_,[ G=0-92 I"deploy” {“crash”’{max} ] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

Reward-based properties (rewards = costs = prices)
— Reimen—» [ F “end” ] - “expected algorithm execution time”

— Rysenergyimax=? [ C=72%° ] - “worst-case expected energy
consumption during the first 2 hours”

Properties can be combined with e.g. arithmetic operators

— e.g. P_,[ Ffail; ] / P_, [ F fail,,, ] - “conditional failure prob.”

52



PRISM GUI: Editing a model

8 00 PRISM 4.1

File Edit Model Properties Simulator Log Options

Ao [o/e[m]x]

PRISM Model File: /Users/dxp/prism-www/tutorial/examples/power/power_policyl.sm

+ Model: p.ower_pollcyl‘sm : e IT———————————_————_————
@ Type: CTMC 10
@ I Modules 11| // Service Queue (50Q)
? sQ 12| // Stores requests which arrive Into the system to be processed.
9 9q 13
® min: 0 : 14| // Maximum queue size
® max: g_max 15| const int q_max = 20;
@ init: 0 A 16
] SP 17| // Request arrival rate
® dsp 18| const double rate_arrive = 1/0.72; // (mean Inter-arrival time Is 8.72 seconds)
® min: 0 19
® max: 2 20| module 50
e init: 0 I
PM 22 /S q = number u:" f‘euuesfs currently In queue
@ 3 Constants 33 q : [0..q_max] init 0;
©- @ q_max : Int 25 // A request arrives
©- @ rate_arrive : double 26 [request] true -> rate_arrive : (q'=min(q+1,q_max));
© @ rate_serve : double 27 // A request Is served
Lo rate_s2i double 28 [serve]l g>1 -> (q'=q-1);
©- @ rate_i2s : d_ouble 29 // Last request Is served
©- @ q_trigger : int 39 [serve_last] g=1 -> (q'=g-1);
31
32 endmodule
33
B -
as
36| // Service Provider (SP)
37| // Processes requests from service queve.
38| // The 5P has 3 power states: sleep, Idle and busy
39
48| // Rate of service (average service time = @.008s)
41| const double rate_serve = 1/0.008;
Built Model 42| // Rate of switching from sleep to Idle (average transition time = 1.65)
States: 42 43| const double rate_s2i = 1/1.6;
44| // Rate of switching from Idle to sleep (average transition time = 8.675)
Initial states: 1 45| const double rate_i2s = 1/0.67;
Transitions: 81 6 vl

| Model

Building model... don. |
- —
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PRISM GUI: The Simulator

e 00 PRISM 4.1
File Edit Model Properties Simulator Log Options
el o | e
Automatic exploration Manual exploration : ( State labels } Path formulae ] Path information ]
| simulate Module/(action] | Rate Update 5 init
» Left 0.006 left_n'=2 ¥ deadlock
| teps |t Right 0.002 right_n'=0 & mini
a - inimum
Backtracking Line 2.0E-4 line_n'=false XK premium
[ Q ik Toleft 2.5E-4 mle.h_n'=lallse
[startLeft) 10.0 left'=true, r'=true
[Steps i ‘ h [¥ Generate time automatically
-
Path
Step Time Left Right Repair... Line Toleft ToRight Rewards
Action J # |Time (+) left_n | left right_n ‘ right r line [ line_n toleft ‘ toleft_n | toright Itorighl_n "perce...‘ '!tme_...[[ “num..
0o |0 (false % (false) | (false) | (true) | (false) | (true) | (false) | (true @  ©
Right 1 12.0649 4
ToRight 2 |12.0806 (false
[startRight] 3 12.1674 true 8
[repairRight] 4 12.2677 ® false 0
Left 5 12.2809
Left 6 12.3071
Left 7 |12.3446 @
Left 8 12.3653
Right 9 12.4059 )}
[startLeft] 10 |12.4583 true
[repairLeft] 11 15.6657 (false)
[startLeft] 12 |15.6834 (true)
[repairLeft) 13 |15.7585 @
Right 14 15.8505 3
Right 15 |15.874
Right 16 15.9084 | ! I , L , L L L ! C

I Model [ Properties I Simulator LLog I

[Loading model... done.
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PRISM GUI: Model checking and graphs

8 00 PRISM 4.1
| Eile Edit Model Properties Simulator Log Options
al 3 5 [ 5] [ B
Properties list: /Users/dxp/prism-www/tutorial/examples/power/power.csl*
Properties 4|, Experiments
»
P=? [ F[T,T) q=q_max | . ')
S=?[q=q_max ]
& Re7[1aT] Property | Defined Const..|  Progress Stats | Method
¥ R=2(5) R=7[1=T]) T=0:1:40 Done Verification
" Ri — R=7[1=T] q_trigger=3:3... Done Verification
N <1. -
= l R=7[I=T] q_trigger=5,T... Done Verification
K R<2(5] R=?[1=T] q_trigger=5,T... Done Verification
R=?[S] q_trigger=2:1... Done Verification
R=?[S] q_trigger=2:1... 49 Stopped Verification
What is the long-run expected size of the queue?
Constants ((Graph 1| Graph2
Name I Type Value Z Expected queue size attime T
T int
12.5 1
- 10.0 o
g f \' e e ¥ -y - i -
$ 7s5) e \\ gt ey qu!gger—E
- N S S SIS SR SR -=-q_trigger=6
Labels g - Wy - q_trigger=9
Name Definition g 509 \"v"'"'""” --q_trigger=12
b} "-1.. - -+ q_trigger=15
2.5 1 q_trigger=18
0.0 = = ; = .
0 10 15 20 25 30 35 40
T

W Properties lelllmr LE’J

Verifying properties... done.
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PRISM - Case studies

Randomised distributed algorithms

— consensus, leader election, self-stabilisation, ...
Randomised communication protocols

— Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
Security protocols/systems

— contract signing, anonymity, pin cracking, quantum crypto, ...
Biological systems

— cell signalling pathways, DNA computation, ...
Planning & controller synthesis

— robotics, dynamic power management, ...
Performance & reliability

— nanotechnology, cloud computing, manufacturing systemes, ...

See: www.prismmodelchecker.org/casestudies
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Case study: Bluetooth

— performance essential for this phase

A,
. e T oy j ) \\\1‘3\%%;%33:%\21
- Complex discovery process (CUIKES e CER R
! "?"1, PRk Y %D‘:rz%q"\ N " %\t*\;)\%l

— two asynchronous 28-bit clocks MOgk 1B} oG AR
— pseudo-random hopping between 32 frequencies &% ikt ks
— random waiting scheme to avoid collisions PR e

~ 17,179,869,184 initial configurations
(too many to sample effectively)

—

- -
- Probabilistic model checking B |
— e.g. “worst-case expected discovery time EO'G -
is at most 5.17s” g o4l oo
“ -y . . E p—
— e.g. “probability discovery time exceeds %02 —exact
6s is always < 0.001” 3 e "fe”"e‘l

— shows weaknesses in simplistic analysis -



Case study: DNA programming

DNA: easily accessible, cheap to synthesise information
processing material

DNA Strand Displacement language, induces CTMC models
— for designing DNA circuits [Cardelli, Phillips, et al.]
— accompanying software tool for analysis/simulation
— now extended to include auto-generation of PRISM models

- Transducer: converts input <tA x> into output <y tA>

Formalising correctness...
— A [ G "deadlock” => "all_done" ]

— E[ F "all_done" ] g



Transducer flaw

- PRISM identifies a 5-step trace to the a (1)
“bad” deadlock state i

— problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates te2 a2 (1)

— previously found manually [Cardelli’10] R
— detection now fully automated

- Bug is easily fixed
— (and verified)

reactive gate

Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) T T (1)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) '
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) a2 a E =
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0) T T T e (1)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0) ' oo



PRISM: Recent & new developments

Major new features:
1. multi-objective model checking
2. parametric model checking
3. real-time: probabilistic timed automata (PTAS)
4. games: stochastic multi-player games (SMGs)

Further new additions:
— strategy (adversary) synthesis
— CTL model checking & counterexample generation

— enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

— efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'1 3]

— benchmark suite & testing functionality [QEST'1 2]
www.prismmodelchecker.org/benchmarks/
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1. Multi-objective model checking

Markov decision processes (MDPs)
— generalise DTMCs by adding nondeterminism {heads}
— for: control, concurrency, abstraction, ...

{init} 5 1

Strategies (or "adversaries”, "policies"”)

— resolve nondeterminism, i.e. choose an
action in each state based on current history 0.3 ftails}

— a strategy induces an (infinite-state) DTMC

- Verification (probabilistic model checking) of MDPs
— quantify over all possible strategies... (i.e. best/worst-case)
— P_g o[ F err]: “the probability of an error is always < 0.01”

Strategy synthesis (dual problem)

— "does there exist a strategy for which the probability of an
error occurring is < 0.017”

— “how to minimise expected run-time?” ol



1. Multi-objective model checking

Multi-objective probabilistic model checking

— investigate trade-offs between conflicting objectives

— in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

— multi(P. g5 [ F transmit ], Rtme_. /[ C])
Numerical queries

— e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

— multi(P,,,,,_- [ F transmit ], Rtme_. [ C])

N
-

. o1
Pareto queries DN
° e
— e.g. "Pareto curve for maximising probability e o N
of transmission and expected battery life-time” | =~ °
. o o E \
— multi(P, ., [ F transmit ], Rtme___ [ C]) —> >



Multi-objective: Applications

Synthesis of team Synthesis of dynamic
formation strategies power management
[ATVA'1 2] controllers [TACAS'T1] ...
1Y "minimise ener “O:: ,
gy - e
g consumption, subject "o
to constraints on:

(i) expected job queue size; T 05T e
(ii) expected number of lost jobs

Probabilistic assume
—guarantee framework
[TACAS'10, TACAS'11]

Pareto curve:
x="probability of
completing task 1"
y="probability of
completing task 2";
z="expected size of
successful team"

Assume-guarantee query:
"does component M, satisfy
guarantee G, provided that
assumption A always holds?"
reduces to...

"is there an adversary (strategy)
of M, satisfying A but not G?"




2. Parametric model checking

Can specify models in parametric form [TASET 3]
— parameters expressed as unevaluated constants

— e.g. const double x;

— transition probabilities specified as expressions over
parameters, e.g. 0.5 + x

Properties are given in PCTL, with parameter constants
— new construct constfilter (min, x1*x2, prop)
— filters over parameter values, rather than states
Determine parameter valuations to guarantee satisfaction
of given properties
- Two methods implemented in PRISM (‘explicit’ engine)

— constraints-based approach is a reimplementation of PARAM
2.0 [Hahn et al]

— sampling-based approaches are new implementation
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Case study: parametric network virus

Parametric model of a network virus

— a grid of connected nodes ast izt (3 Ngh nodes
— virus spawns/multiplies
— once infected, virus ¢ ¢ & barrier nodes
repeatedly tries to spread @Y (€2 (2.3)
to neighbouring nodes inlsciad
e s } , 31# 32# 33::'Iownodes
— there are ‘high’ and ‘low (3.1) (3.2) (3.3)

nodes, with barrier nodes from ‘high’ to ‘low’
— choice of infection by virus probabilistic
— choice of which node to infect nondeterministic
Property specification

— minimal expected number of attacks until infection of (1,1),
starting from (N,N), is upper bounded by 20

— probability of detection and of barrier nodes subject to repair
by increasing pjhagg aNd Ppaadg
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study: parametric models

0.3

~ (0.02044

|,

=
R Ly
|
|

~ 0.09903

i
0

Checking if minimal exp. number of attacks >= 20

Property constfilter(min,...,Ruqiacksns—20 [ F “end”])
Model (network virus) has 809 states, € = 0.05

Optimal value found in 2mins, showing optimal parameter
values

66



3. Probabilistic timed automata (PTAs)

+ Probability + nondeterminism + real-time
— timed automata + discrete probabilistic choice, or...
— probabilistic automata + real-valued clocks

- PTA example: message transmission over faulty channel

x:=0 retry States

- locations + data variables

X>3

x>1Atries<N Transitions

x:=0, - guards and action labels

quit tries:=tries+1

Real-valued clocks
- state invariants, guards, resets

Probability
- discrete probabilistic choice

O/



Modelling PTAs in PRISM

PRISM modelling language
— textual language, based on guarded commands

pta
const int N;
module transmitter

s : [0..3] init O;
tries : [0..N+1] init O;

x : clock;
invariant (s=0 = x<2) & (s=1 = x<5) endinvariant

[send] s=0 & tries<N & x=>1
— 0.9 : (s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards
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Modelling PTAs in PRISM

PRISM modelling language

— textual language, based on guarded commands

pta
const int N;

module transmitter €¢—

s : [0..3] init O; .
tries : [0..N+1] init O; /

x : clock;
invariant (s=0 = x<2) & (s=1 = x<5) endinvariant

[send] s=0 & tries<N & x=>1
— 0.9 : (s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:

- modules
- variables
commands
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Modelling PTAs in PRISM

PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N;
- modules

module transmitter . variables

s : [0..3] init O; - commands

tries : [0..N+1] init O;

x : clock: «— New for PTAs:

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant | . clocks

[send] s=0 & tries<N & x>1 —

~ - jnvariants
— 0.9 : (s’=3) \= - guards/resets
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0); <« J
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);

endmodule
rewards “energy” (s=0) : 2.5; endrewards
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Modelling PTAs in PRISM

PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N; . modules
module transmitter . variables
s : [0..3] init O; - commands
tries : [0..N+1] init O;
x : clock; New for PTAs:
invariant (s=0 = x<2) & (s=1 = x<5) endinvariant . clocks
[send] s=0 & tries<N & x>1 - invariants
- 0.9 : (s’=3) - guards/resets
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0); Also:
[quit] s=0 & tries>N — (s’ =2);
| _ - rewards
endmodule / (i.e. costs, prices)
rewards “energy” (s=0) : 2.5; endrewards .




Model checking PTAs in PRISM

Properties for PTAs:
— min/max probability of reaching X (within time T)
— min/max expected cost/reward to reach X
(for “linearly-priced” PTAs, i.e. reward gain linear with time)

PRISM has two different PTA model checking techniques...

“Digital clocks” - conversion to finite-state MDP

— preserves min/max probability + expected cost/reward/price
— (for PTAs with closed, diagonal-free constraints)

— efficient, in combination with PRISM’s symbolic engines

- Quantitative abstraction refinement

— zone-based abstractions of PTAs using stochastic games

— provide lower/upper bounds on quantitative properties

— automatic iterative abstraction refinement 75



Case study: FireWire root contention

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove

devices at any time .!

— no requirement for a single PC (but need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses randomisation (electronic coin tossing) and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry
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Case study: FireWire root contention

- Detailed probabilistic model:
— probabilistic timed automaton (PTA), including: gm = @
. concurrency: messages between nodes and wires @ W \

. timing delays taken from official standard

. underspecification of delays (upper/lower bounds) -

— maximum model size: 170 million states

- Probabilistic model checking (with PRISM)

— verified that root contention always
resolved with probability 1

. P_; [ F (end A elected) ] g o 2

— investigated worst-case expected time
taken for protocol to complete

+ Raxe? [ F (end A elected) ]
— investigated the effect of using biased coin

uuuuu




Case study: FireWire root contention

“maximum expected
time to elect a leader”

“minimum probability

of electing leader by time T” (using a biased coin)

@ x 10
<10
. . . S
[0}
(using a biased coin) 8
E
[}
2 6
(1]
g
2 4
- 2
i g
goax & 2
50 =
© E
2os = o
S £ 0.2 0.4 0.6 0.8
© 04 probability of choosing fast
7
'né"o.z
Q
£ 0
€ 1

10

0.45

maximum expected time to elect a leader (ns)

0.5 0.55 0.6 0.65 0.7
probability of choosing fast

/5



4. Stochastic multi-player games (SMGs)

- Stochastic multi-player games :

— players control states; choose actions

b
— models competitive/collaborative behaviour v /N
Probabilistic model checking @
— automated methods to reason about complex
player strategies and interaction with probabilities
Property specifications
— rPATL: extends Alternating Temporal Logic (and PCTL
— (({1,3)) Poon [ F='0error ]

— “do players 1 and 3 have a strategy to ensure that the
probability of an error occurring within 10 steps is less than
0.01, regardless of the strategies of other players”

- Applications

— controller synthesis (controller vs. environment),
security (system vs. attacker), distributed algorithms, ...

PRISM-games: www.prismmodelchecker.org/games

N
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Case study: Energy management

- Energy management protocol for Microgrid
— Microgrid: local energy management

— randomised demand management protocol
[Hildmann/Saffre'l 1]

— probability: randomisation, demand model, ...

- Existing analysis 20
— simulation-based
— assumes all clients are unselfish

15

« Our analysis
— stochastic multi-player game
— clients can cheat (and cooperate)

Deviations of

10 varying size

Reward per household

e
~.n
..
S

— exposes protocol weakness .

1 2 3 4 5 6 7 8
Number of households

— propose/verify simple fix



Microgrid demand-side management

- The model

— SMG with N players (one per household)

— analyse 3-day period, using piecewise
approximation of daily demand curve

— add rewards for value V

Power demand

Built/analysed models IR
— for N=2,...,7 households
N States Transitions
- Step 1: assume all households £ 743904 | 21251720
follow algorithm of [HS'11] (MDP) 6 2,384,369 7,260,756
— obtain Optimal value for Pstart 7 6,241,312 19,678,246

Step 2: introduce competitive behaviour (SMQG)
— allow coalition C of households to deviate from algorithm
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Results: Competitive behaviour

The original algorithm does not discourage selfish
behaviour...

20
- Strong
S incentive to All follow alg.
@ 15 = .
n eviate .
3
= No use of alg.
g _
T 10 - _
§ Deviations of
e varying size
5 I I I I I I |

1 2 3 4 5 6 7 8
Number of households
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Results: Competitive behaviour

Algorithm fix: simple punishment mechanism
— distribution manager can cancel some tasks

20 =
% Better to
< 15- - collaborate All follow alg.
0 /(With all) _
@] —
-
‘g_ Deviations of
S 10 - varying size
S
=
D
o

5 T |

1 2 3 4 5 6 7 8
Number of households 80



Conclusion

Introduction to probabilistic model checking

- Overview of PRISM

New developments

1. multi-objective model checking

2. parametric model checking

3. real-time: probabilistic timed automata (PTAS)

4. games: stochastic multi-player games (SMGs)
Related/future work

— quantitative runtime verification [CACM 201 2]

— statistical model checking [TACAS’04]

— probabilistic hybrid automata [CPSWeek’13 tutorial]

— autonomous urban driving [QEST’13]

— verification of cardiac pacemakers [RTSS’12, HSCC’13]
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