

Probabilistic model checking with PRISM: overview and recent developments

Marta Kwiatkowska

Department of Computer Science, University of Oxford

ATVA 2013, Hanoi, October 2013

What is probabilistic model checking?

- Probabilistic model checking...
 - is a formal verification technique for modelling and analysing systems that exhibit probabilistic behaviour
- Formal verification...
 - is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems

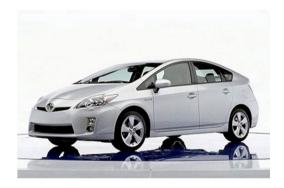
Why formal verification?

• Errors in computerised systems can be costly...

Bug found in FPU. Intel (eventually) offers to replace faulty chips. Estimated loss: \$475m

Ariane 5 (1996)

Self-destructs 37secs into maiden launch.
Cause: uncaught overflow exception.

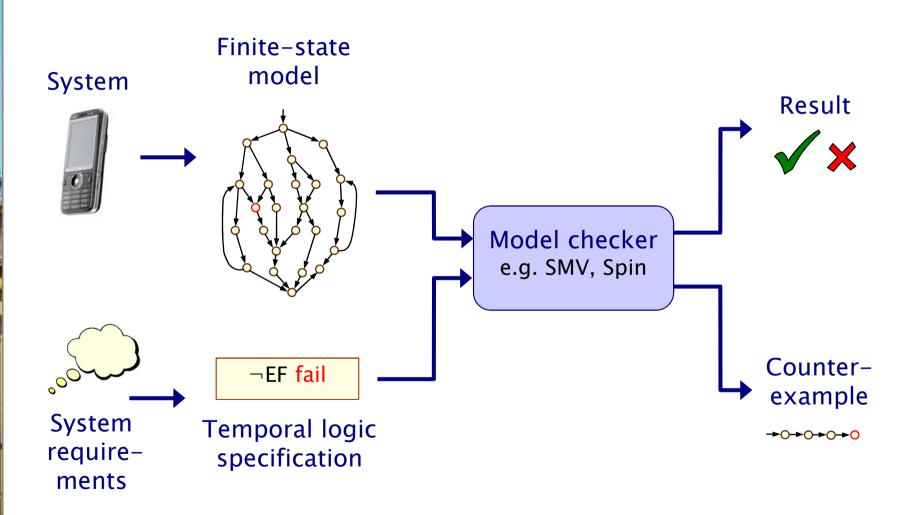


Toyota Prius (2010)

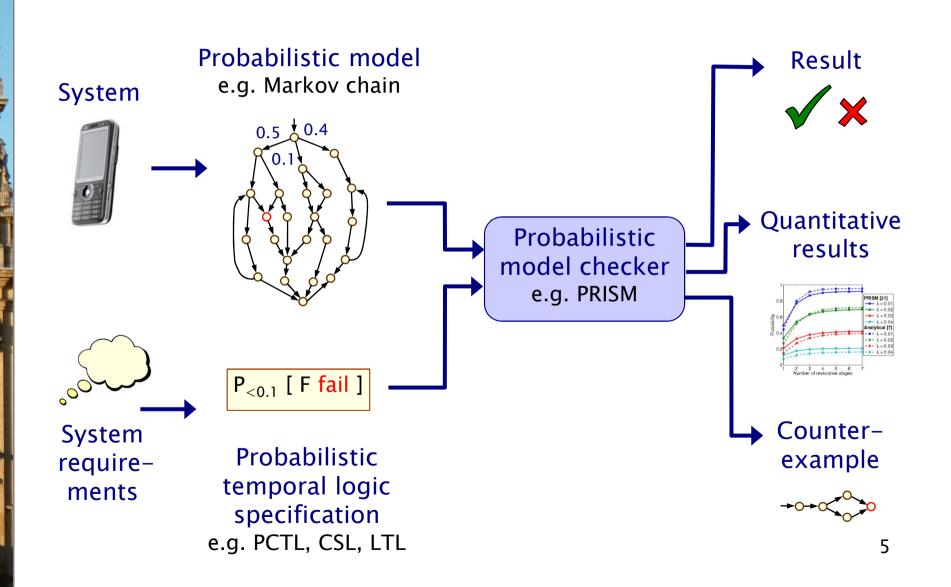
Software "glitch" found in anti-lock braking system. 185,000 cars recalled.

- Why verify?
 - "Testing can only show the presence of errors, not their absence." [Edsger Dijstra]

Model checking



Probabilistic model checking



Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Examples: real-world protocols featuring randomisation:
 - Randomised back-off schemes
 - · CSMA protocol, 802.11 Wireless LAN
 - Random choice of waiting time
 - · IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 - Random choice over a set of possible addresses
 - · IPv4 Zeroconf dynamic configuration (link-local addressing)
 - Randomised algorithms for anonymity, contract signing, ...

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance

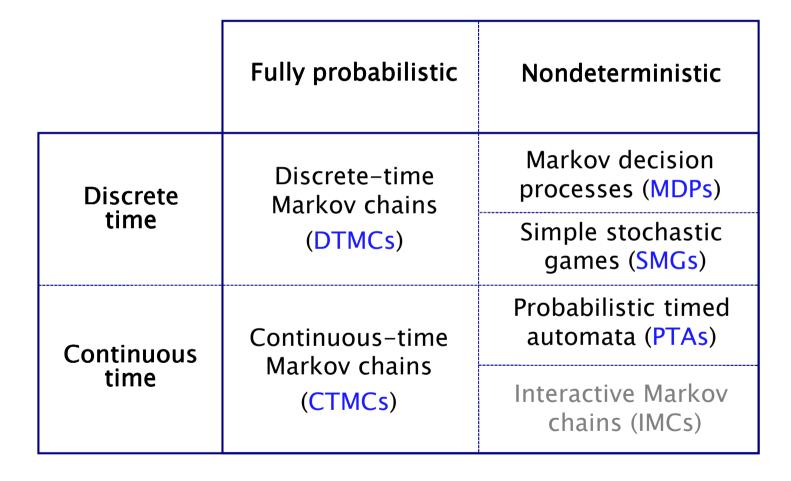
Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- To model biological processes
 - reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion

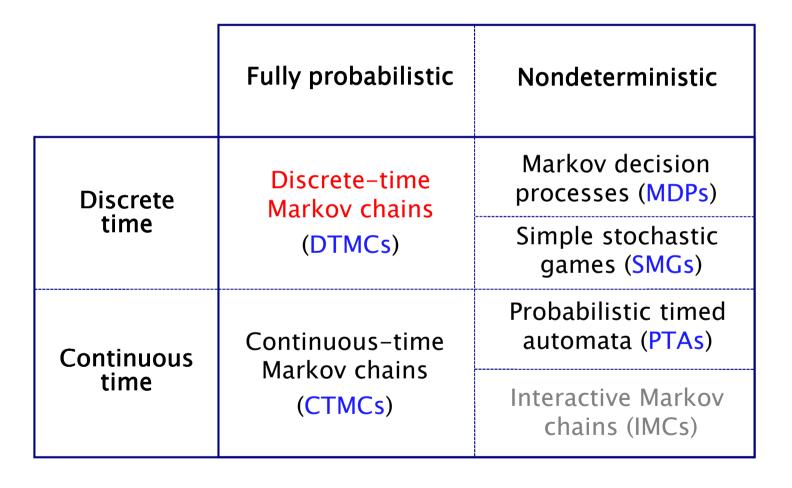
Verifying probabilistic systems

- We are not just interested in correctness
- We want to be able to quantify:
 - security, privacy, trust, anonymity, fairness
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - and much more...
- Quantitative, as well as qualitative requirements:
 - how reliable is my car's Bluetooth network?
 - how efficient is my phone's power management policy?
 - is my bank's web-service secure?
 - what is the expected long-run percentage of protein X?

Probabilistic models



Probabilistic models

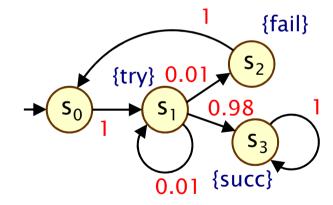


Overview

- Introduction
- Model checking for discrete-time Markov chains (DTMCs)
 - DTMCs: definition, paths & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case studies: Bluetooth, (CTMC) DNA computing
- PRISM: overview
 - modelling language, properties, GUI, etc
- PRISM: recent developments
 - Multi-objective model checking
 - Parametric models
 - Probabilistic times automata, case study: FireWire
 - Stochastic games, example: smartgrid protocol
- Summary

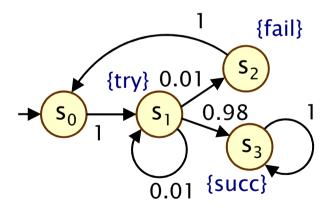
Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions



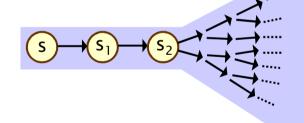
Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P: S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : $S \rightarrow 2^{AP}$ is function labelling states with atomic propositions
- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - can add self loops to represent final/terminating states



Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set $C(\omega)$, for a finite path ω
 - = set of infinite paths with the common finite prefix ω
 - for example: C(ss₁s₂)



Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if A ∈ Σ, the complement Ω \ A is in Σ
 - if A_i ∈ Σ for i ∈ \mathbb{N} , the union $\cup_i A_i$ is in Σ
 - the empty set \varnothing is in Σ
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω, Σ, Pr)
 - $-\Omega$ is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - Pr : Σ → [0,1] is the probability measure:
 - $Pr(\Omega) = 1$ and $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space over paths

- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing $C(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\cdot P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Probability space - Example

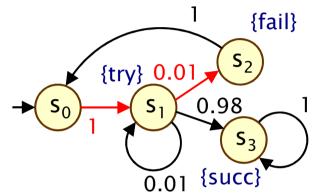
Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

$$- C(\omega) = all paths starting s_0 s_1 s_2...$$

$$- P_{s0}(\omega) = P(s_0,s_1) \cdot P(s_1,s_2)$$
$$= 1 \cdot 0.01 = 0.01$$

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$



Paths which are eventually successful and with no failures

$$-\ C(s_0s_1s_3)\ \cup\ C(s_0s_1s_1s_3)\ \cup\ C(s_0s_1s_1s_1s_3)\ \cup\ ...$$

$$- \text{Pr}_{s0}(\text{C}(s_0s_1s_3) \cup \text{C}(s_0s_1s_1s_3) \cup \text{C}(s_0s_1s_1s_1s_3) \cup ...)$$

$$= P_{s0}(s_0s_1s_3) + P_{s0}(s_0s_1s_1s_3) + P_{s0}(s_0s_1s_1s_1s_3) + \dots$$

$$= 1.0.98 + 1.0.01.0.98 + 1.0.01.0.01.0.98 + ...$$

$$= 0.9898989898...$$

$$= 98/99$$

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [true $U^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

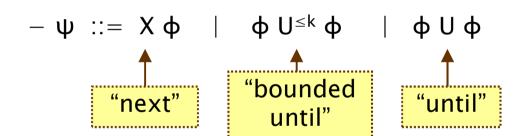
PCTL syntax

PCTL syntax:

ψ is true with probability ~p

 $- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$

(state formulas)



(path formulas)

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S,s_{init},P,L):

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \qquad \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

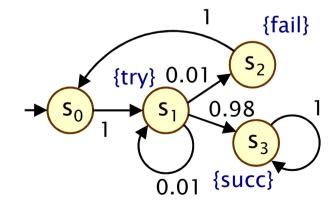
$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

Examples

$$- s_3 \models succ$$

$$-s_1 \models try \land \neg fail$$



PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 ...$ in the DTMC:

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

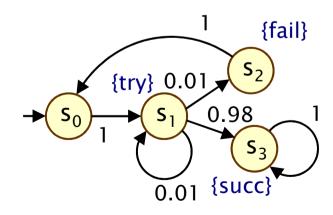
$$-\omega \models \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \text{ such that } s_i \models \varphi_2 \text{ and } \forall j < i, \ s_j \models \varphi_1$$

- $-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$
- Some examples of satisfying paths:

$$S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \cdots$$

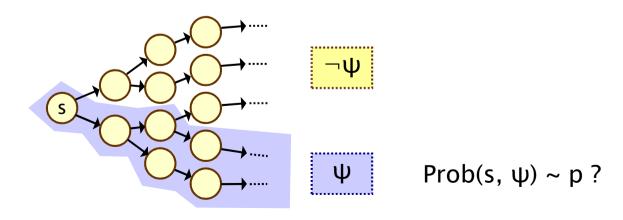
− ¬fail U succ

$$S_0 \rightarrow S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \cdots$$



PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])



More PCTL...

Usual temporal logic equivalences:

$$-$$
 false $≡ ¬$ true

$$- \ \varphi_1 \lor \ \varphi_2 \equiv \neg (\neg \varphi_1 \land \neg \varphi_2)$$

$$- \ \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$$

$$- F \varphi \equiv \Diamond \varphi \equiv \text{true } U \varphi$$

$$- G \Phi \equiv \Box \Phi \equiv \neg (F \neg \Phi)$$

– bounded variants: $F^{\leq k}$ Φ, $G^{\leq k}$ Φ

(false)

(disjunction)

(implication)

(eventually, "future")

(always, "globally")

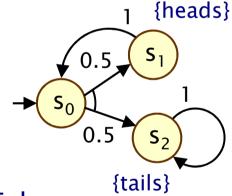
Negation and probabilities

$$- \text{ e.g. } \neg P_{>p} [\varphi_1 U \varphi_2] \equiv P_{\leq p} [\varphi_1 U \varphi_2]$$

$$-$$
 e.g. $P_{>p}$ [$G \varphi$] $\equiv P_{<1-p}$ [$F \neg \varphi$]

Qualitative vs. quantitative properties

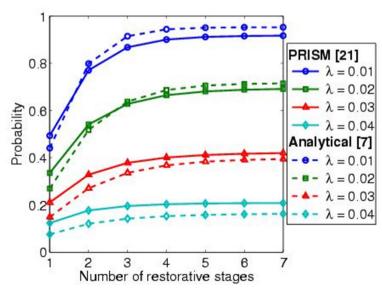
- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- A PCTL property $P_{\sim p}$ [ψ] is...
 - qualitative when p is either 0 or 1
 - quantitative when p is in the range (0,1)
- $P_{>0}$ [F ϕ] is identical to EF ϕ
 - there exists a finite path to a ϕ -state



- $P_{\geq 1}$ [F φ] is (similar to but) weaker than AF φ
 - e.g. AF "tails" (CTL) \neq P_{>1} [F "tails"] (PCTL)

Quantitative properties

- Consider a PCTL formula $P_{\sim p}$ [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=2}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

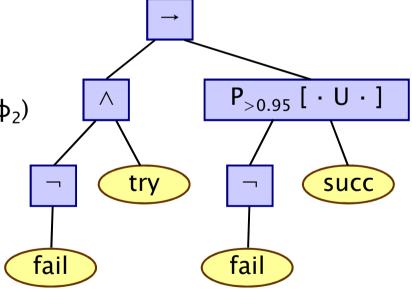


PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D= (S, s_{init}, P, L) , PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities Prob(s, ψ) for all states s ∈ S
 - focus here on "until" case: $Ψ = Φ_1 U Φ_2$



PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{\leq 0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- We refer to the first phase as "precomputation"
 - two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically (which is more expensive)
 - gives exact results for the states in Syes and Sno (no round-off)
 - for $P_{\sim p}[\cdot]$ where p is 0 or 1, no further computation required

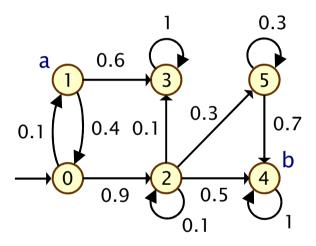
PCTL until – Linear equations

$$Prob(s,\, \phi_1 \,U\, \phi_2) \ = \ \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s',\, \phi_1 \,U\, \phi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in $|S^2|$ unknowns instead of |S| where $S^2 = S \setminus (S^{yes} \cup S^{no})$
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss-Seidel, ...
 (preferred in practice due to scalability)

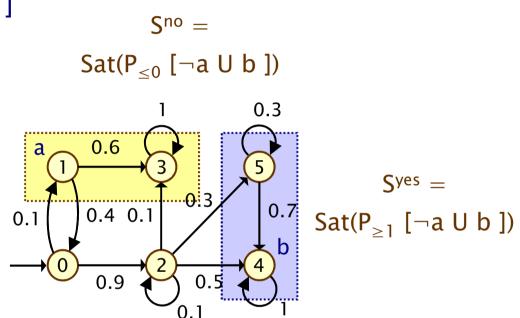
PCTL until – Example

Example: P_{>0.8} [¬a U b]



PCTL until – Example

Example: P_{>0.8} [¬a U b]



PCTL until – Example

- Example: $P_{>0.8}$ [¬a U b]
- Let $x_s = Prob(s, \neg a \cup b)$ Sat($P_{\leq 0} [\neg a \cup b]$)
- Solve:

$$x_4 = x_5 = 1$$

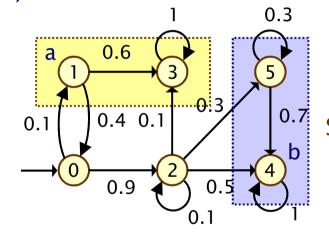
$$x_1 = x_3 = 0$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$\underline{\text{Prob}}(\neg a \ U \ b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a \cup b]) = \{ s_2, s_4, s_5 \}$$



 $S^{no} =$

 $S^{yes} = 0.7$ Sat($P_{\geq 1}$ [¬a U b])

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - $-\Phi_1 \cup \Phi_2$: linear equation system, at most |S| variables, $O(|S|^3)$
- Complexity:
 - linear in |Φ| and polynomial in |S|

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, $P_{\sim p}$ [...] always contains a single temporal operator)
 - (not covered in this lecture)
- Another direction: extend DTMCs with costs and rewards...

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology "rewards" regardless

Reward-based properties

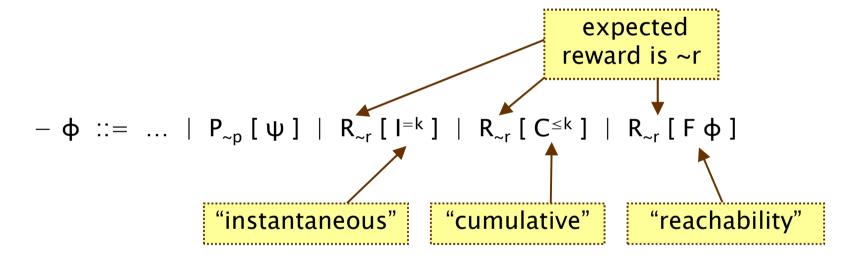
- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S, s_{init} , P,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}:S\to\mathbb{R}_{\geq 0}$ is the state reward function (vector)
 - ι : S × S → $\mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": $\underline{\rho}$ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator



- where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- R_{-r} [·] means "the expected value of · satisfies ~r"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - "the expected value of the state reward at time-step k is ~r"
 - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: $R_{r} [C^{\leq k}]$
 - "the expected reward cumulated up to time-step k is ~r"
 - e.g. "the expected power consumption over one hour"
- Reachability: R_{~r} [F ф]
 - "the expected reward cumulated before reaching a state satisfying φ is ~r"
 - e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:

$$-s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \} \sim p$$

For a state s in the DTMC:

$$-s \models R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{I=k}) \sim r$$

$$-s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C\leq k}) \sim r$$

$$-s \models R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

Definition of random variables:

- for an infinite path $\omega = s_0 s_1 s_2 ...$

$$X_{l=k}(\omega) = \rho(s_k)$$

$$X_{C \le k}(\omega) \ = \left\{ \begin{array}{cc} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{array} \right.$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \end{cases}$$
$$\sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise}$$

- where $k_{\varphi} = \min\{ j \mid s_{j} \models \varphi \}$

Model checking reward properties

- Instantaneous: $R_{\sim r}$ [$I^{=k}$]
- Cumulative: $R_{r} [C^{\leq t}]$
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations
- Reachability: R_{~r} [F φ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]

PCTL model checking summary...

- Introduced probabilistic model checking for DTMCs
 - discrete time and probability only
 - PCTL model checking via linear equation solving
 - LTL also supported, via automata-theoretic methods
- Continuous-time Markov chains (CTMCs)
 - discrete states, continuous time
 - temporal logic CSL
 - model checking via uniformisation, a discretisation of the CTMC
- Markov decision processes (MDPs)
 - add nondeterminism to DTMCs
 - PCTL, LTL and PCTL* supported
 - model checking via linear programming

PRISM

- developed at Birmingham/Oxford University, since 1999
- free, open source software (GPL), runs on all major OSs

- Construction/analysis of probabilistic models...
 - discrete-time Markov chains, continuous-time Markov chains,
 Markov decision processes, probabilistic timed automata,
 stochastic multi-player games, ...
- Simple but flexible high-level modelling language
 - based on guarded commands; see later...
- Many import/export options, tool connections
 - in: (Bio)PEPA, stochastic π -calculus, DSD, SBML, Petri nets, ...
 - out: Matlab, MRMC, INFAMY, PARAM, ...

PRISM...

- Model checking for various temporal logics...
 - PCTL, CSL, LTL, PCTL*, rPATL, CTL, …
 - quantitative extensions, costs/rewards, ...

- Various efficient model checking engines and techniques
 - symbolic methods (binary decision diagrams and extensions)
 - explicit-state methods (sparse matrices, etc.)
 - statistical model checking (simulation-based approximations)
 - and more: symmetry reduction, quantitative abstraction refinement, fast adaptive uniformisation, ...
- Graphical user interface
 - editors, simulator, experiments, graph plotting
- See: http://www.prismmodelchecker.org/
 - downloads, tutorials, case studies, papers, ...

PRISM modelling language

- Simple, textual, state-based modelling language
 - used for all probabilistic models supported by PRISM
 - based on Reactive Modules [AH99]
- Language basics
 - system built as parallel composition of interacting modules
 - state of each module given by finite-ranging variables
 - behaviour of each module specified by guarded commands
 - · annotated with probabilities/rates and (optional) action label
 - transitions are associated with state-dependent probabilities
 - interactions between modules through synchronisation

[send] (s=2)
$$\rightarrow$$
 p_{loss}: (s'=3)&(lost'=lost+1) + (1-p_{loss}): (s'=4); action guard probability update probability update

Simple example

```
dtmc
module M1
  x:[0..3] init 0;
  [a] x=0 -> (x'=1);
  [b] x=1 \rightarrow 0.5 : (x'=2) + 0.5 : (x'=3);
endmodule
module M2
  y: [0..3] init 0;
  [a] y=0 -> (y'=1);
  [b] y=1 \rightarrow 0.4 : (y'=2) + 0.6 : (y'=3);
endmodule
```

Costs and rewards

- We augment models with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we consistently use the terminology "rewards" regardless
- Properties (see later)
 - reason about expected cumulative/instantaneous reward

Rewards in the PRISM language

```
rewards "total_queue_size"
true : queue1+queue2;
endrewards
```

(instantaneous, state rewards)

```
rewards "dropped"
[receive] q=q_max : 1;
endrewards
```

```
(cumulative, transition rewards)
(q = queue size, q_max = max.
queue size, receive = action label)
```

```
rewards "time"
true: 1;
endrewards
```

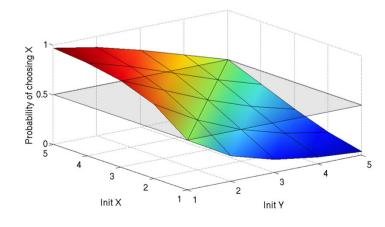
(cumulative, state rewards)

```
rewards "power"

sleep=true: 0.25;
sleep=false: 1.2 * up;
[wake] true: 3.2;
endrewards
```

PRISM - Property specification

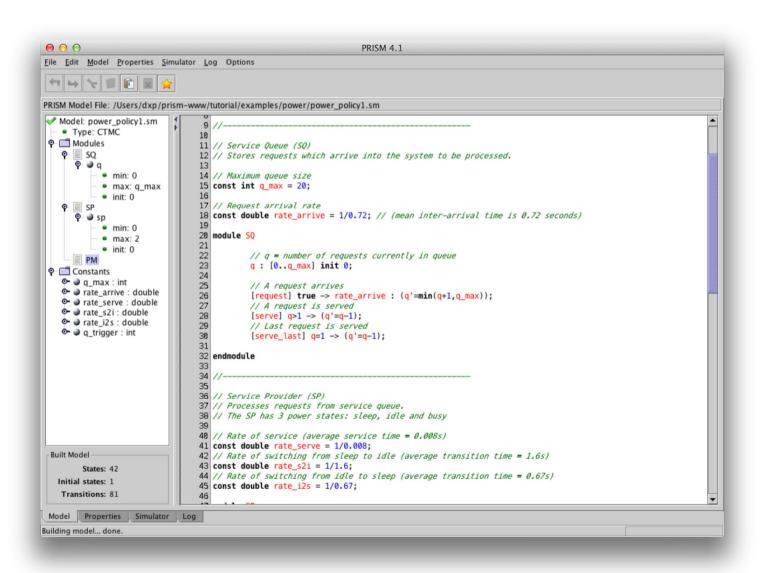
- Temporal logic-based property specification language
 - subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...
- Simple examples:
 - P_{<0.01} [F "crash"] "the probability of a crash is at most 0.01"
 - $-S_{>0.999}$ ["up"] "long-run probability of availability is >0.999"
- Usually focus on quantitative (numerical) properties:
 - P_{=?} [F "crash"]
 "what is the probability of a crash occurring?"
 - then analyse trends in quantitative properties as system parameters vary



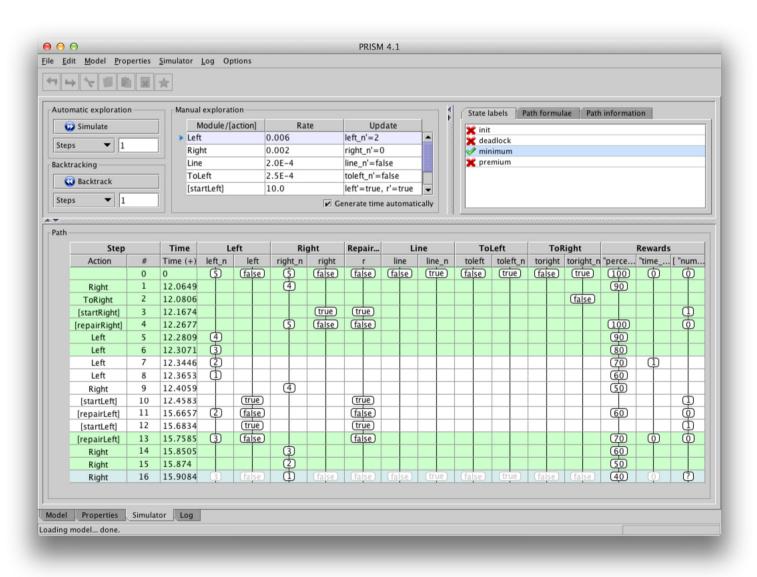
PRISM - Property specification

- Properties can combine numerical + exhaustive aspects
 - $P_{max=?}$ [$F^{\le 10}$ "fail"] "worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components"
 - $P_{=?}$ [$G^{\leq 0.02}$!"deploy" {"crash"}{max}] "the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario"
- Reward-based properties (rewards = costs = prices)
 - R_{{"time"}=?} [F "end"] "expected algorithm execution time"
 - $R_{\text{"energy"}}$ [$C^{≤7200}$] "worst-case expected energy consumption during the first 2 hours"
- Properties can be combined with e.g. arithmetic operators
 - e.g. P_{=?} [F fail₁] / P_{=?} [F fail_{any}] "conditional failure prob."

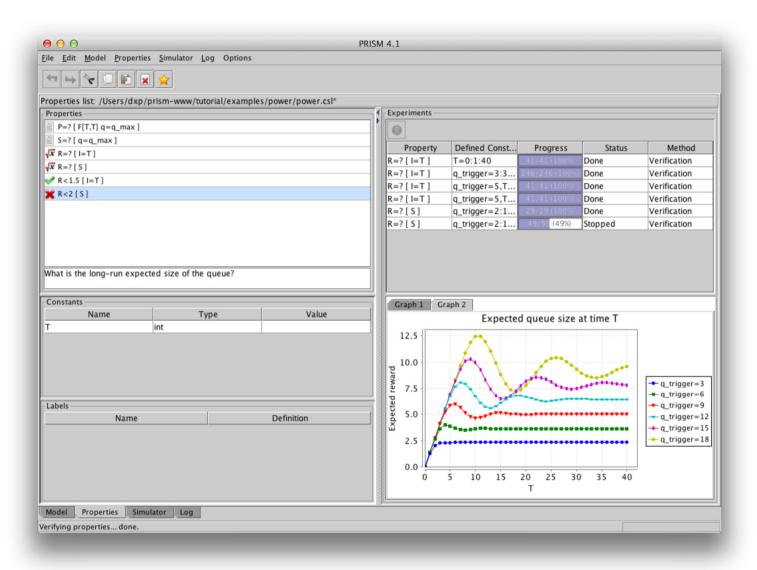
PRISM GUI: Editing a model



PRISM GUI: The Simulator



PRISM GUI: Model checking and graphs

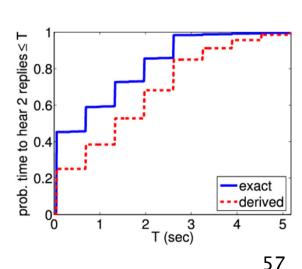


PRISM - Case studies

- Randomised distributed algorithms
 - consensus, leader election, self-stabilisation, ...
- Randomised communication protocols
 - Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
- Security protocols/systems
 - contract signing, anonymity, pin cracking, quantum crypto, ...
- Biological systems
 - cell signalling pathways, DNA computation, ...
- Planning & controller synthesis
 - robotics, dynamic power management, ...
- Performance & reliability
 - nanotechnology, cloud computing, manufacturing systems, ...
- See: <u>www.prismmodelchecker.org/casestudies</u>

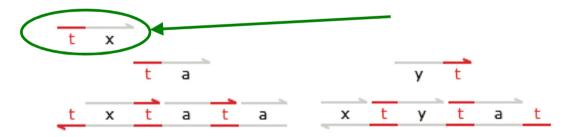
Case study: Bluetooth

- Device discovery between pair of Bluetooth devices.
 - performance essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
 - 17,179,869,184 initial configurations (too many to sample effectively)
- Probabilistic model checking
 - e.g. "worst-case expected discovery time is at most 5.17s"
 - e.g. "probability discovery time exceeds 6s is always < 0.001"
 - shows weaknesses in simplistic analysis



Case study: DNA programming

- DNA: easily accessible, cheap to synthesise information processing material
- DNA Strand Displacement language, induces CTMC models
 - for designing DNA circuits [Cardelli, Phillips, et al.]
 - accompanying software tool for analysis/simulation
 - now extended to include auto-generation of PRISM models
- Transducer: converts input <t^ x> into output <y t^>



- Formalising correctness...
 - A [G "deadlock" => "all_done"]
 - E [F "all_done"]

Transducer flaw

- PRISM identifies a 5-step trace to the "bad" deadlock state
 - problem caused by "crosstalk"
 (interference) between DSD species
 from the two copies of the gates
 - previously found manually [Cardelli'10]
 - detection now fully automated
- · Bug is easily fixed
 - (and verified)

reactive gates

Counterexample:

$$x_0 = t$$
 (1)

$$x_1$$
 c.1 t (1)

PRISM: Recent & new developments

Major new features:

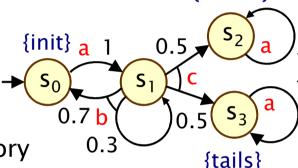
- 1. multi-objective model checking
- 2. parametric model checking
- 3. real-time: probabilistic timed automata (PTAs)
- 4. games: stochastic multi-player games (SMGs)

Further new additions:

- strategy (adversary) synthesis
- CTL model checking & counterexample generation
- enhanced statistical model checking
 (approximations + confidence intervals, acceptance sampling)
- efficient CTMC model checking
 (fast adaptive uniformisation) [Mateescu et al., CMSB'13]
- benchmark suite & testing functionality [QEST'12]
 www.prismmodelchecker.org/benchmarks/

1. Multi-objective model checking

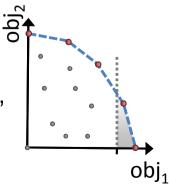
- Markov decision processes (MDPs)
 - generalise DTMCs by adding nondeterminism
 - for: control, concurrency, abstraction, …
- Strategies (or "adversaries", "policies")
 - resolve nondeterminism, i.e. choose an action in each state based on current history
 - a strategy induces an (infinite-state) DTMC
- Verification (probabilistic model checking) of MDPs
 - quantify over all possible strategies... (i.e. best/worst-case)
 - $-P_{<0.01}$ [F err] : "the probability of an error is <u>always</u> < 0.01"
- Strategy synthesis (dual problem)
 - "does there exist a strategy for which the probability of an error occurring is < 0.01?"</p>
 - "how to minimise expected run-time?"



{heads}

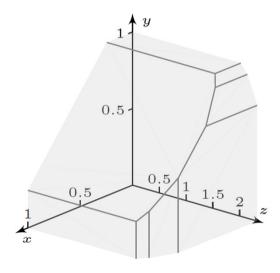
1. Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
 - $multi(P_{>0.95}[F transmit], R^{time}_{>10}[C])$
- Numerical queries
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"
 - multi(P_{max=?} [F transmit], R^{time}_{>10} [C])
- Pareto queries
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
 - multi(P_{max=?} [F transmit], R^{time}_{max=?} [C])



Multi-objective: Applications

Synthesis of team formation strategies [ATVA'12]



Pareto curve:

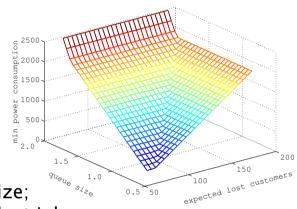
x="probability of
completing task 1";
y="probability of
completing task 2";
z="expected size of
successful team"

Synthesis of dynamic power management controllers [TACAS'11]

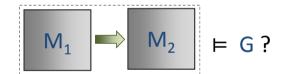
"minimise energy consumption, subject to constraints on:

(i) expected job queue size;

(ii) expected number of lost jobs



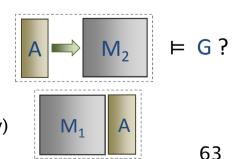
Probabilistic assume –guarantee framework [TACAS'10, TACAS'11]



Assume-quarantee query:

"does component M₂ satisfy guarantee G, provided that assumption A always holds?" reduces to...

"is there an adversary (strategy) of M₂ satisfying A but not G?"



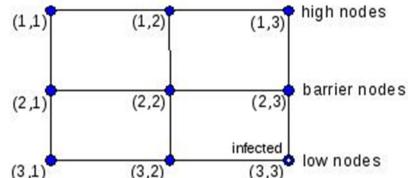
2. Parametric model checking

- Can specify models in parametric form [TASE13]
 - parameters expressed as unevaluated constants
 - e.g. const double x;
 - transition probabilities specified as expressions over parameters, e.g. 0.5 + x
- Properties are given in PCTL, with parameter constants
 - new construct constfilter (min, x1*x2, prop)
 - filters over parameter values, rather than states
- Determine parameter valuations to guarantee satisfaction of given properties
- Two methods implemented in PRISM ('explicit' engine)
 - constraints-based approach is a reimplementation of PARAM2.0 [Hahn et al]
 - sampling-based approaches are new implementation

Case study: parametric network virus

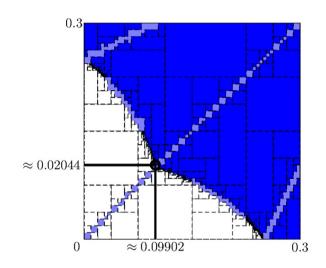
Parametric model of a network virus

- a grid of connected nodes
- virus spawns/multiplies
- once infected, virus
 repeatedly tries to spread
 to neighbouring nodes



- there are 'high' and 'low'
 nodes, with barrier nodes from 'high' to 'low'
- choice of infection by virus probabilistic
- choice of which node to infect nondeterministic
- Property specification
 - minimal expected number of attacks until infection of (1,1),
 starting from (N,N), is upper bounded by 20
 - probability of detection and of barrier nodes subject to repair by increasing p_{lhadd} and p_{baadd}

Case study: parametric models

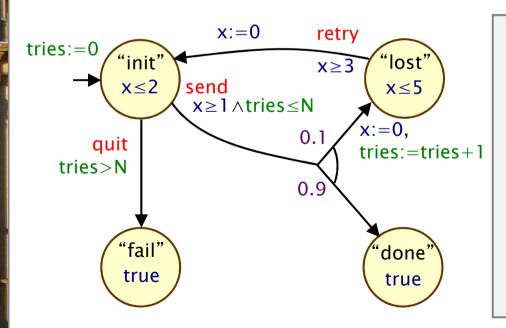


Checking if minimal exp. number of attacks > = 20

Property constfilter(min,..., $R_{\{\text{"attacks"}\}>=20}$ [F "end"]) Model (network virus) has 809 states, $\epsilon=0.05$ Optimal value found in 2mins, showing optimal parameter values

3. Probabilistic timed automata (PTAs)

- Probability + nondeterminism + real-time
 - timed automata + discrete probabilistic choice, or...
 - probabilistic automata + real-valued clocks
- PTA example: message transmission over faulty channel



States

locations + data variables

Transitions

guards and action labels

Real-valued clocks

state invariants, guards, resets

Probability

discrete probabilistic choice

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N:
module transmitter
   s : [0..3] init 0;
   tries : [0..N+1] init 0;
   x : clock:
   invariant (s=0 \Rightarrow x \le 2) & (s=1 \Rightarrow x \le 5) endinvariant
   [send] s=0 & tries \leq N & x \geq 1
       \rightarrow 0.9 : (s'=3)
        + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
   [retry] s=1 \& x \ge 3 \rightarrow (s'=0) \& (x'=0);
   [quit] s=0 \& tries>N \rightarrow (s'=2);
endmodule
rewards "energy" (s=0) : 2.5; endrewards
```

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N:
module transmitter
   s:[0..3] init 0;
   tries : [0..N+1] init 0;
   x : clock:
   invariant (s=0 \Rightarrow x \le 2) & (s=1 \Rightarrow x \le 5) endinvariant
   [send] s=0 & tries \leq N & x \geq 1
       \rightarrow 0.9 : (s'=3)
       + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
   [retry] s=1 \& x \ge 3 \rightarrow (s'=0) \& (x'=0);
   [quit] s=0 \& tries>N \rightarrow (s'=2);
endmodule
rewards "energy" (s=0): 2.5; endrewards
```

Basic ingredients:

- modules
- variables
- commands

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N:
module transmitter
   s : [0..3] init 0;
  tries: [0..N+1] init 0;
   x : clock:
   invariant (s=0 \Rightarrow x \le 2) & (s=1 \Rightarrow x \le 5) endinvariant
   [send] s=0 & tries \leq N & x \geq 1
       \rightarrow 0.9 : (s'=3)
       + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
   [retry] s=1 \& x \ge 3 \rightarrow (s'=0) \& (x'=0);
   [quit] s=0 \& tries > N \rightarrow (s'=2):
endmodule
rewards "energy" (s=0): 2.5; endrewards
```

Basic ingredients:

- modules
- variables
- commands

New for PTAs:

- clocks
- invariants
- guards/resets

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N:
module transmitter
   s : [0..3] init 0;
   tries : [0..N+1] init 0;
   x : clock:
   invariant (s=0 \Rightarrow x \le 2) & (s=1 \Rightarrow x \le 5) endinvariant
   [send] s=0 & tries \leq N & x \geq 1
        \rightarrow 0.9 : (s'=3)
        + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
   [retry] s=1 \& x \ge 3 \rightarrow (s'=0) \& (x'=0);
   [quit] s=0 \& tries>N \rightarrow (s'=2):
endmodule
rewards "energy" (s=0): 2.5; endrewards
```

Basic ingredients:

- modules
- variables
- commands

New for PTAs:

- clocks
- invariants
- guards/resets

Also:

rewards(i.e. costs, prices)

Model checking PTAs in PRISM

Properties for PTAs:

- min/max probability of reaching X (within time T)
- min/max expected cost/reward to reach X
 (for "linearly-priced" PTAs, i.e. reward gain linear with time)
- PRISM has two different PTA model checking techniques...
- "Digital clocks" conversion to finite-state MDP
 - preserves min/max probability + expected cost/reward/price
 - (for PTAs with closed, diagonal-free constraints)
 - efficient, in combination with PRISM's symbolic engines

Quantitative abstraction refinement

- zone-based abstractions of PTAs using stochastic games
- provide lower/upper bounds on quantitative properties
- automatic iterative abstraction refinement

Case study: FireWire root contention

• FireWire (IEEE 1394)

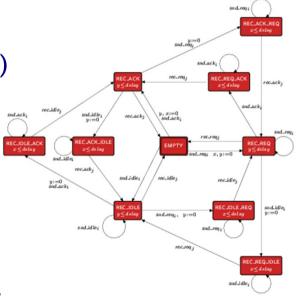
- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" add/remove devices at any time

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses randomisation (electronic coin tossing) and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

Case study: FireWire root contention

- probabilistic timed automaton (PTA), including:
 - · concurrency: messages between nodes and wires
 - · timing delays taken from official standard
 - underspecification of delays (upper/lower bounds)
- maximum model size: 170 million states

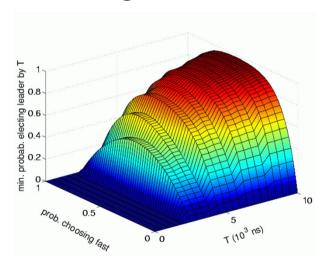
- Probabilistic model checking (with PRISM)
 - verified that root contention always resolved with probability 1
 - $P_{\geq 1}$ [F (end \wedge elected)]
 - investigated worst-case expected time taken for protocol to complete
 - $R_{max=?}$ [F (end \land elected)]
 - investigated the effect of using biased coin



Case study: FireWire root contention

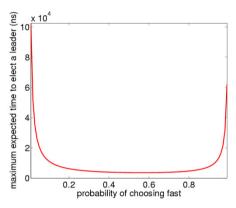
"minimum probability of electing leader by time T"

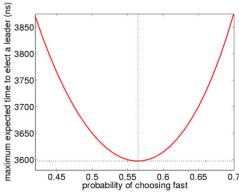
(using a biased coin)



"maximum expected time to elect a leader"

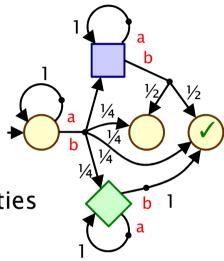
(using a biased coin)





4. Stochastic multi-player games (SMGs)

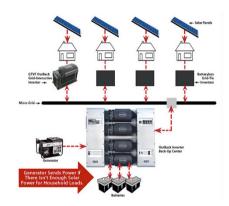
- Stochastic multi-player games
 - players control states; choose actions
 - models competitive/collaborative behaviour
- Probabilistic model checking
 - automated methods to reason about complex player strategies and interaction with probabilities
- Property specifications
 - rPATL: extends Alternating Temporal Logic (and PCTL)
 - $-\langle\langle\{1,3\}\rangle\rangle$ P_{<0.01} [F^{\leq 10} error]
 - "do players 1 and 3 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.01, regardless of the strategies of other players"
- Applications
 - controller synthesis (controller vs. environment),
 security (system vs. attacker), distributed algorithms, ...
- PRISM-games: www.prismmodelchecker.org/games



Case study: Energy management

Energy management protocol for Microgrid

- Microgrid: local energy management
- randomised demand management protocol [Hildmann/Saffre'11]
- probability: randomisation, demand model, ...

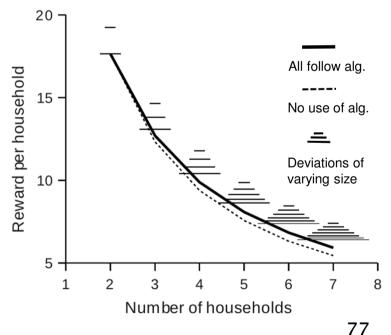


Existing analysis

- simulation-based
- assumes all clients are unselfish

Our analysis

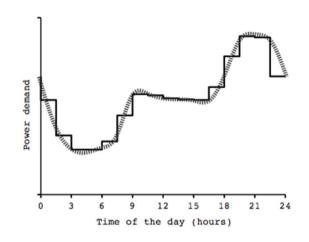
- stochastic multi-player game
- clients can cheat (and cooperate)
- exposes protocol weakness
- propose/verify simple fix



Microgrid demand-side management

- SMG with N players (one per household)
- analyse 3-day period, using piecewise approximation of daily demand curve
- add rewards for value V

- for N=2,...,7 households
- Step 1: assume all households follow algorithm of [HS'11] (MDP)
 - obtain optimal value for P_{start}

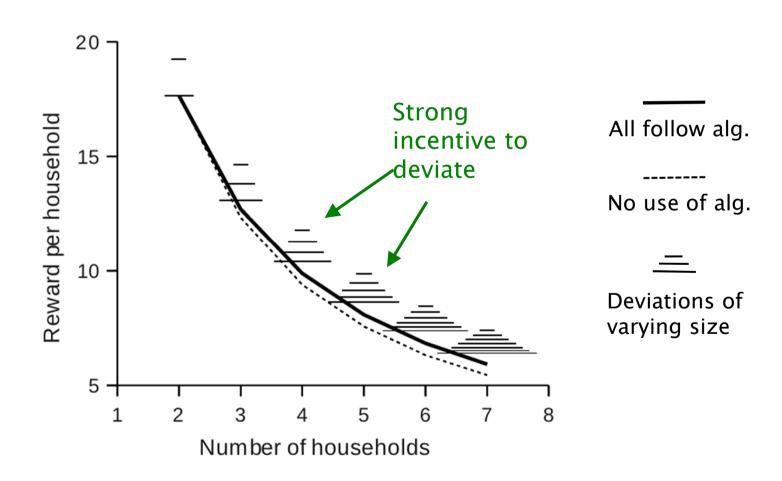


N	States	Transitions
5	743,904	2,145,120
6	2,384,369	7,260,756
7	6,241,312	19,678,246

- Step 2: introduce competitive behaviour (SMG)
 - allow coalition C of households to deviate from algorithm

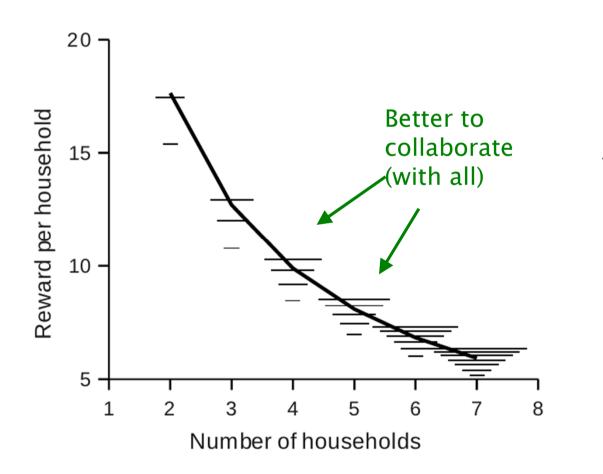
Results: Competitive behaviour

 The original algorithm does not discourage selfish behaviour...



Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some tasks



All follow alg.

Deviations of varying size

Conclusion

- Introduction to probabilistic model checking
- Overview of PRISM
- New developments
 - 1. multi-objective model checking
 - 2. parametric model checking
 - 3. real-time: probabilistic timed automata (PTAs)
 - 4. games: stochastic multi-player games (SMGs)
- Related/future work
 - quantitative runtime verification [CACM 2012]
 - statistical model checking [TACAS'04]
 - probabilistic hybrid automata [CPSWeek'13 tutorial]
 - autonomous urban driving [QEST'13]
 - verification of cardiac pacemakers [RTSS'12, HSCC'13]

References

Tutorial papers

- M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model Checking. In SFM'07, vol 4486 of LNCS (Tutorial Volume), pages 220– 270, Springer. June 2007.
- V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. *Automated Verification Techniques for Probabilistic Systems*. In SFM'11, volume 6659 of LNCS, pages 53–113, Springer. June 2011.
- G. Norman, D. Parker and J. Sproston. *Model Checking for Probabilistic Timed Automata*. Formal Methods in System Design, 43(2), pages 164–190, Springer. September 2013.
- M. Kwiatkowska, G. Norman and D. Parker. *Probabilistic Model Checking for Systems Biology*. In Symbolic Systems Biology, pages 31–59, Jones and Bartlett. May 2010.

PRISM tool paper

M. Kwiatkowska, G. Norman and D. Parker. *PRISM 4.0: Verification of Probabilistic Real-time Systems*. In Proc. CAV'11, volume 6806 of LNCS, pages 585–591, Springer. July 2011.

Acknowledgements

- My group and collaborators in this work
- Project funding
 - ERC, EPSRC, Microsoft Research
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - VERWARE www.veriware.org
 - PRISM <u>www.prismmodelchecker.org</u>