

Automated Verification and Strategy Synthesis for Probabilistic Systems

Marta Kwiatkowska

Department of Computer Science, University of Oxford

ATVA 2013, Hanoi, Vietnam, October 2013

Joint work with: Dave Parker

Why automated verification?

• Errors in computerised systems can be costly...

Pentium chip (1994) Bug found in FPU. Intel (eventually) offers to replace faulty chips. Estimated loss: \$475m

Infusion pumps (2010) Patients die because of incorrect dosage. Cause: software malfunction. 79 recalls.

- Why verify?
- "Testing can only show the presence of errors, not their absence." [Edsger Dijstra]

Toyota Prius (2010) Software "glitch" found in anti-lock braking system. 185,000 cars recalled.

Probabilistic verification

- Probabilistic verification
 - formal verification of systems exhibiting stochastic behaviour
- Why probability?
 - unreliability (e.g. component failures)
 - uncertainty (e.g. message losses/delays over wireless)
 - randomisation (e.g. in protocols such as Bluetooth, ZigBee)

Quantitative properties

- reliability, performance, quality of service, ...
- "the probability of an airbag failing to deploy within 0.02s"
- "the expected time for a network protocol to send a packet"
- "the expected power usage of a sensor network over 1 hour"

Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative properties of probabilistic system models

Historical perspective

- First algorithms proposed in 1980s
 - [Vardi, Courcoubetis, Yannakakis, ...]
 - algorithms [Hansson, Jonsson, de Alfaro] & first implementations
- 2000: tools ETMCC (MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker, ...]
 - ETMCC (now MRMC): model checking for continuous-time Markov chains [Baier, Hermanns, Haverkort, Katoen, ...]
- Now mature area, of industrial relevance
 - successfully used by non-experts for many application domains, but full automation and good tool support essential
 - distributed algorithms, communication protocols, security protocols, biological systems, quantum cryptography, planning...
 - genuine flaws found and corrected in real-world systems

Quantitative probabilistic verification

What's involved

- specifying, extracting and building of quantitative models
- graph-based analysis: reachability + qualitative verification
- numerical solution, e.g. linear equations/linear programming
- typically computationally more expensive than the nonquantitative case

• The state of the art

- fast/efficient techniques for a range of probabilistic models
- feasible for models of up to 10^7 states (10^{10} with symbolic)
- extension to probabilistic real-time systems
- abstraction refinement (CEGAR) methods
- probabilistic counterexample generation
- assume-guarantee compositional verification
- tool support exists and is widely used, e.g. PRISM, MRMC

Tool support: PRISM

- PRISM: Probabilistic symbolic model checker [CAV11]
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- Support for:
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ...
 - properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - New! strategy synthesis, stochastic game models (SMGs) for collaborative protocols, parametric models
- See: <u>http://www.prismmodelchecker.org/</u>

Quantitative verification in action

- Bluetooth device discovery protocol
 - frequency hopping, randomised delays
 - low-level model in PRISM, based on detailed Bluetooth reference documentation
 - numerical solution of 32 Markov chains, each approximately 3 billion states

- identified worst-case time to hear one message
- FireWire root contention
 - wired protocol, uses randomisation
 - model checking using PRISM
 - optimum probability of leader election by time T for various coin biases
 - demonstrated that a biased coin can improve performance

Quantitative verification in action

- DNA transducer gate [ProcRSoc12]
 - DNA computing with a restricted class of DNA strand displacement structures
 - transducer design due to Cardelli
 - automatically found and fixed design error, using Microsoft's DSD and PRISM

- Microgrid demand management protocol [TACAS12]
 - designed for households to actively manage demand while accessing a variety of energy sources
 - found and fixed a flaw in the protocol, due to lack of punishment for selfish behaviour
 - implemented in PRISM-games

This lecture...

- From quantitative verification to quantitative synthesis
 - correct-by-construction synthesis as a first class citizen
- Majority of research to date has focused on verification
 - scalability and performance of algorithms
 - extending expressiveness of models and logics
 - real-world case studies
- Some work to date on counterexamples
 - but difficult to represent them compactly
- In this lecture, we focus on strategy synthesis
 - can we find a strategy to guarantee that a quantitative property is satisfied?
 - advantage: correct-by-construction
 - incidentally, can reuse the verification algorithms...

Quantitative (probabilistic) verification

Automatic verification and strategy synthesis from quantitative properties for probabilistic models

Markov decision processes (MDPs)

- Model nondeterministic as well as probabilistic behaviour
 - e.g. for concurrency, under-specification, abstraction...
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions
- Formally, an MDP is a tuple
 - (S, s_{init} , Act, δ , L)
- where:
 - **S** is a set of states
 - $\mathbf{s}_{init} \in \mathbf{S}$ is the initial state
 - $\delta: S \times Act \rightarrow Dist(S)$ is a (partial) transition probability function
 - L : S \rightarrow 2^{AP} is a labelling function
 - Act is a set of actions, AP is a set of atomic propositions
 - Dist(S) is the set of discrete probability distributions over S

Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence of (connected) states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices

- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies

- Strategies are classified according to
- randomisation:
 - σ is deterministic (pure) if $\sigma(s_1...s_n)$ is a point distribution, and randomised otherwise
- memory:
 - σ is memoryless (simple) if $\sigma(s_1...s_n) = \sigma(s_n)$ for all $s_1...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_1...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space Pr_{s}^{σ} over $Path^{\sigma}(s)$

Example strategy

 Fragment of induced Markov chain for strategy which picks b then c in s₁

Running example

- Example MDP
 - robot moving through terrain divided in to 3 x 2 grid

States: s₀, s₁, s₂, s₃, s₄, s₅ Actions: north, east, south, west, stuck Labels (atomic propositions): hazard, goal₁, goal₂

Properties and objectives

- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{\geq 0}$
- F b = true U b
- We refer to φ as property, ψ and ρ as objectives
 - (branching time more challenging for synthesis)

Properties and objectives

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy $\boldsymbol{\sigma}$
 - $s \models P_{\sim p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ "
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma} \{ \omega \in Path_s^{\sigma} \mid \omega \vDash \psi \}$
- R_{r} [] means "the expected value of satisfies r"
- Some examples:
 - $P_{\geq 0.4}$ [F "goal"] "probability of reaching goal is at least 0.4"
 - $R_{<5}$ [$C^{\le 60}$] "expected power consumption over one hour is below 5"
 - $R_{\leq 10}$ [F "end"] "expected time to termination is at most 10"

Verification and strategy synthesis

- The verification problem is:
 - Given an MDP M and a property φ , does M satisfy φ under any possible strategy $\sigma?$
- The synthesis problem is dual:
 - Given an MDP M and a property $\varphi,$ find, if it exists, a strategy σ such that M satisfies φ under σ
- Verification and strategy synthesis is achieved using <u>the</u> <u>same techniques</u>, namely computing optimal values for probability objectives:
 - $\Pr_{s}^{\min}(\psi) = \inf_{\sigma} \Pr_{s}^{\sigma}(\psi)$
 - $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
 - and similarly for expectations

Computing reachability for MDPs

- Computation of probabilities $\text{Pr}_{s}^{\text{max}}(F \text{ b})$ for all $s \in S$
- Step 1: pre-compute all states where probability is 1 or 0
 - graph-based algorithms, yielding sets Syes, Sno
- Step 2: compute probabilities for remaining states (S?)
 - (i) solve linear programming problem
 - (i) approximate with value iteration
 - (iii) solve with policy (strategy) iteration

• 1. Precomputation:

- algorithm Prob1E computes Syes
 - there exists a strategy for which the probability of "F b" is 1
- algorithm Prob0A computes Sno
 - for all strategies, the probability of satisfying "F b" is 0

Example – Reachability

Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁)

Example – Precomputation

Sno

............

ςyes

Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁)

Reachability for MDPs

- 2. Numerical computation
 - compute probabilities Pr_s^{max}(F b)
 - for remaining states in $S^{?}$ = S \setminus (S^{yes} \cup S^{no})
 - obtained as the unique solution of the linear programming (LP) problem:

minimize $\sum_{s \in S^{?}} x_{s}$ subject to the constraints: $x_{s} \ge \sum_{s' \in S^{?}} \delta(s, a)(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \delta(s, a)(s')$ for all $s \in S^{?}$ and for all $a \in A(s)$

This can be solved with standard techniques

 e.g. Simplex, ellipsoid method, branch-and-cut

Example – Reachability (LP)

Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁) Let $x_i = Pr_{s_i}^{max}(F \text{ goal}_1)$

Sves:
$$x_4 = x_5 = 1$$

S^{no}:
$$x_2 = x_3 = 0$$

For $S^{?} = \{x_{0}, x_{1}\}$:

Minimise $x_0 + x_1$ subject to:

- $x_0 \ge 0.4 \cdot x_0 + 0.6 \cdot x_1$ (east)
- $x_0 \ge 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \ge 0.5$ (south)
- $x_1 \ge 0$ (east)

Example – Reachability (LP)

For $S^{?} = \{x_{0}, x_{1}\}$:

Minimise $x_0 + x_1$ subject to:

- $X_0 \ge X_1$ (east)
- $x_0 \ge 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \ge 0.5$ (south)

Example – Reachability (LP)

0

0

Let $x_i = Pr_{s_i}^{max}(F \text{ goal}_1)$ $S^{yes}: x_4 = x_5 = 1$ $S^{no}: x_2 = x_3 = 0$ For $S^? = \{x_0, x_1\}$: Minimise $x_0 + x_1$ subject to: • $x_0 \ge x_1$

- $x_0 \ge 0.1 \cdot x_1 + 0.1$
- $x_1 \ge 0.5$

Strategy synthesis

- Compute optimal probabilities $\text{Pr}_s^{\text{max}}(F \text{ b})$ for all $s \in S$
- To compute the optimal strategy σ^* , choose the locally optimal action in each state
 - in general depends on the method used to compute the optimal probabilities
- For reachability
 - memoryless strategies suffice
- For step-bounded reachability
 - need finite-memory strategies
 - typically requires backward computation for a fixed number of steps

Example – Strategy

0

0

Optimal strategy: s₀ : east s₁ : south **s**₂ : **s**₃ : -

s₄ : east

s₅: -

X₀

2/3

Example – Bounded reachability

Example: $P_{max=?}$ [$F^{\leq 3}$ goal₂]

So compute: $Pr_s^{max}(F^{\leq 3} \text{ goal}_2) = 0.99$

Optimal strategy is finite-memory: s₄ (after 1 step): east s₄ (after2 steps): west

Strategy synthesis for LTL objectives

- Reduce to the problem of reachability on the product of MDP M and an omega-automaton representing ψ
 - for example, deterministic Rabin automaton (DRA)
- Need only consider computation of maximum probabilities $Pr_s^{max}(\psi)$
 - since $Pr_s^{min}(\psi) = 1 Pr_s^{max}(\neg \psi)$
- To compute the optimal strategy σ^{\ast}
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy with one mode for each state of the DRA for ψ

Example – LTL

- $P_{\geq 0.05}$ [(G \neg hazard) \land (GF goal₁)]
 - avoid hazard and visit $goal_1$ infinitely often
- $Pr_{s_0}^{max}((G \neg hazard) \land (GF goal_1)) = 0.1$

Optimal strategy: (in this instance, memoryless) s_0 : south s_1 : s_2 : s_3 : s_4 : east s_5 : west

Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas $P_{\sim p}$ [ψ]
 - require all conjuncts to be satisfied
- Reduce to a multi-objective reachability problem on the product of MDP M and the omega-automata representing the conjuncts
 - convert (by negation) to formulas with lower probability bounds ($\leq,\,<$), then to DRA
 - need to consider all combinations of objectives
- The problem can be solved using LP methods [TACAS07] or via approximations to Pareto curve [ATVA12]
 - strategies may be finite memory and randomised
- Continue as for single-objectives to compute the strategy σ^{\ast}
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy

Example - Multi-objective

Example – Multi-objective strategies

Strategy 1 (deterministic) s₀ : east s₁ : south s₂ : s₃ : s₄ : east s₅ : west

Example - Multi-objective strategies

Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

Example – Multi–objective strategies

Optimal strategy: (randomised) s_0 : 0.3226 : east 0.6774 : south s_1 : 1.0 : south s_2 : s_3 : s_4 : 1.0 : east s_5 : 1.0 : west

Case study: Dynamic power management

- Synthesis of dynamic power management schemes
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlelp, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

Build controllers that

- minimise energy consumption, subject to constraints on e.g.
- probability that a request waits more than K steps
- expected number of lost disk requests

See: <u>http://www.prismmodelchecker.org/files/tacas11/</u>

Stochastic multi-player games (SMGs)

- Stochastic multi-player games
 - players control states; choose actions
 - models competitive/collaborative behaviour
- Property specifications
 - rPATL: extends Alternating Temporal Logic (and PCTL)
 - $\langle \langle \{1,3\} \rangle \rangle P_{<0.01}$ [$F^{\leq 10}$ error]

- "do players 1 and 3 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.01, regardless of the strategies of other players?"
- Applications
 - controller synthesis (controller vs. environment), security (system vs. attacker), distributed algorithms, ...
- PRISM-games: <u>www.prismmodelchecker.org/games</u>

Model checking rPATL

- Basic algorithm: as for any branching-time temporal logic
 - recursive descent of formula parse tree
 - compute $Sat(\phi) = \{ s \in S \mid s \models \phi \}$ for each subformula ϕ
- Main task: checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - $\text{ e.g. } \langle \langle C \rangle \rangle P_{\geq q}[\psi] \ \Leftrightarrow \ \text{sup}_{\sigma_1 \in \Sigma_1} \text{ inf}_{\sigma_2 \in \Sigma_2} \text{ Pr}_s^{\sigma_1, \sigma_2}(\psi) \geq q$
 - complexity: NP \cap coNP (without any R[F⁰] operators)
 - compared to, e.g. P for Markov decision processes
 - complexity for full logic: NEXP \cap coNEXP (due to R[F^0] op.)
- In practice though:
 - evaluation of numerical fixed points ("value iteration")
 - up to a desired level of convergence
 - usual approach taken in probabilistic model checking tools

Probabilities for P operator

- E.g. $\langle \langle C \rangle \rangle P_{\geq q}$ [F φ] : max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2}(F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
- Value is:
 - -1 if $s \in Sat(\varphi)$, and otherwise least fixed point of:

$$f(s) = \begin{cases} \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ \\ \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

- Computation:
 - start from zero, propagate probabilities backwards
 - guaranteed to converge

Strategy synthesis for stochastic games

- Generate strategies for individual players, or for a coalition
- Problem statement:
 - Given a game G and an rPATL property $\langle \langle C \rangle \rangle P_{\sim q}[\psi]$, does there exist a strategy σ_1 for players in C such that, for all strategies σ_2 outside C, the probability of satisfying ψ under σ_1 and σ_2 meets the bound $\sim q$
- Compute optimal probabilities
 - for reachability, value or policy iteration, similar to that for MDPs
 - for LTL $\psi,$ again work via product with the Rabin automaton for the formula
- To compute the optimal strategy
 - compute parity objectives for parity automaton from DRA
 - for reachability, memoryless deterministic strategies suffice

Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - when taking action south in state s_6
 - probability of (correctly) going to s₄ is in interval [p,q]
 - rPATL: $\langle \langle \{1\} \rangle \rangle P_{max=?} [Fgoal_1]$

Example – Stochastic games

- rPATL: $\langle \langle \{1\} \rangle \rangle$ Pmax=? [F goal₁]
 - let [p,q] = [0.5- Δ , 0.5+ Δ]; vary Δ
 - optimal strategy: if $\Delta \ge 7/18$ (i.e. if $p \le 1/9$), then pick south in s₀, otherwise pick east

{hazard}

Conclusion

- Overview of strategy synthesis
 - for probabilistic LTL and reward objectives
 - multi-objective properties
 - Markov decision process and stochastic games models

New features of PRISM

- strategy (adversary) synthesis
- multi-objective verification

- Further/related work

- task graph scheduling [FMSD'13]
- strategy generation for autonomous urban driving [QEST'13]

Acknowledgements

- My group and collaborators in this work
- Project funding
 - ERC, EPSRC, Microsoft Research
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - VERWARE <u>www.veriware.org</u>
 - PRISM www.prismmodelchecker.org