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Vector Addition Systems

Definition

Vector addition system (VAS) : finite set A ⊆ Zd .
Actions : a ∈ A.

A = {a1, a2} with a1 = = (−1, 1)

and a2 = = (2,−1)
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Semantics

Definition

Configurations : x ∈ Nd .
Transition relation : x

a−→ y if x, y ∈ Nd , a ∈ A and y = x + a.

A = {a1, a2} with a1 = = (−1, 1)

and a2 = = (2,−1)
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Minsky Machines without = 0
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Petri nets

p1

t1
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2

∼

VAS with states

(−1, 1)

(2,−1)

∼ VAS

A = {(−1, 1), (2,−1)}
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The Reachability Problem

Reachability Problem

INPUT : A, a VAS
(cinit, cfinal), a pair of configurations.

OUTPUT : cinit
a1−→ . . .

ak−→ cfinal for some actions a1, . . . , ak ?
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Central Problem

Many VAS Problems reduce to the VAS reachability:
I Boundedness / Place boundedness.
I Safety.
I Reversibility.
I Coverability.
I ...

Other problems reduce to the VAS reachability.
I Satisifiability of some logics on data words [Bojanczyk & David &

Muscholl & Schwentick & Segoufin ’06 ’11]
I Software Model Checking [Heizmann & Hoenicke & Podelski ’13]
I ...
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Reachability Relation

Definition

a1 . . . ak
is equal to

a1−→ . . .
ak−→

W
=

⋃
w∈W

w

A∗
=

∗
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Reachability Sets

Definition

Reachability set from cinit =

®
c

∣∣∣∣∣ cinit
∗

c

´

cinit

∗∗

∗

∗

∗ ∗

Reachability set from cinit

=
Most precise inductive invariant containing cinit.
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A Simple Algorithm

Reachability Semi-Algorithm:
INPUT : (A, cinit) initialized VAS
OUTPUT : The reachability set.
C← {cinit}
while C is not inductive

select an action a
C← C ∪

¶
c′
∣∣∣ ∃c ∈ C c

a−→ c′
©

return C

Remarks:

Correct !

Terminates if, and only if, the reachability set is finite.
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Monotonicity

Lemma (Monotonicity)

For any configuration c:

cinit
w

cfinal

⇒
cinit
+
c

w cfinal
+
c

Proof:
x

a−→ y
⇒ y = x + a
⇒ (y + c) = (x + c) + a

⇒
x
+
c

a−→
y
+
c
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Example of Computation

A = {a1, a2} with a1 = (−1, 1) and a2 = (2,−1).
cinit = (1, 0).

(1, 0)
a1−→ (0, 1)

a2−→ (2, 0)
By monotonicity ∀n ≥ 0:

(n + 1, 0) =
(1, 0)

+
(n, 0)

a1a2 (2, 0)
+

(n, 0)
= (n + 2, 0)

By induction ∀n ≥ 0:

(1, 0)
(a1a2)n

(n + 1, 0).

cinit

(a1a2)∗

c ⇐⇒ c ∈ (1, 0) + N(1, 0)

cinit

(a1a2)∗a∗1
c ⇐⇒ c ∈ {(1, 0), (0, 1)} + N(1, 0) + N(0, 1)

Jérôme Leroux (CNRS) Computing Vector Addition System Reachability Sets 12 / 41



Acceleration

Acceleration Semi-Algorithm:
INPUT : (A, cinit) initialized VAS
OUTPUT : The reachability set.
C← {cinit}
while C is not inductive

select word σ

C←
{
c′

∣∣∣∣∣∣ ∃c ∈ C c
σ∗

c′
}

return C

Remarks:

Correct !

Implemented in tools : FAST, LASH, TREX, ...
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Flat Initialized VAS

Definition (Flat Initialized VAS)

An initialized VAS (A, cinit) is flat if:

Reachability set from cinit =

c

∣∣∣∣∣∣∣ cinit

σ∗1 . . . σ
∗
k

c


for some σ1, . . . , σk ∈ A∗.

Lemma

There exists a terminating execution of the acceleration semi-algorithm
from (A, cinit) if, and only if, (A, cinit) is flat.
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Deterministic Executions

Theorem

Assume that the line “select word σ” produces an infinite sequence of
words such that any finite sequence is a subsequence, then the acceleration
semi-algorithm terminates from (A, cinit) if, and only if, (A, cinit) is flat.

Proof.

Just observe that C ⊆
{
c′

∣∣∣∣∣∣ ∃c ∈ C c
σ∗

c′
}

.
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Presburger Sets

Definition

A Presburger set is a set X ⊆ Nd definable in FO(N,+).

Example

(1, 1) + N(1, 1) + N(2, 0)

Denoted by:

φ(x , y) := ∃n1∃n2 x = 1 + n1 + 2n2 ∧ y = 1 + n1
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Semilinear Sets

Definition (Ginsburg & Spanier ’66)

Linear set : b + Np1 + · · ·+ Npm with b,p1, . . . ,pm ∈ Nd .
Semilinear set : finite union of linear sets.

(1, 1) + N(1, 1) + N(2, 0)
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Presburger Sets = Semilinear Sets

Theorem (Ginsburg & Spanier ’66)

Presburger sets = semilinear sets

Corollary

Semilinear sets are closed under union, intersection, complement,
projection of components, ...
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Some Undecidable Problems

Given a relation R ⊆ Nd × Nd denoted by a Presburger formula, the
following problems are undecidable:

I R∗ is Presburger ? is equal to a given Presburger relation ?
I {y ∈ Nd | (cinit, y) ∈ R∗} is Presburger ? is equal to a given Presburger

set ?
I A Minsky machine is Flat ? Its reachability set is Presburger ? is equal

to a given Presburger set ?
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Fireability

Lemma

For any word σ ∈ A∗, there exists a unique configuration cσ such that:

x
σ

⇐⇒ x ≥ cσ

a1 = = (−1, 1) and a2 = = (2,−1).

x
a1a1a2

⇐⇒
x ≥ 0 ∧ x + a1 ≥ 0 ∧ x + a1 + a1 ≥ 0 ∧ x + a1 + a1 + a2 ≥ 0

⇐⇒
x ≥ (0, 0) ∧ x ≥ (1,−1) ∧ x ≥ (2,−2) ∧ x ≥ (0,−1)

⇐⇒
x ≥ (2, 0)
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Proof

σ = a1 . . . ak :

x
σ

⇐⇒∧
0≤p≤k

x +
p∑

j=1

aj ≥ 0

⇐⇒
x ≥ cσ

where cσ(i) = max0≤p≤k −
∑p

j=1 aj(i).
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Transitive Closure with Presburger Arithmetic

Theorem (Fribourg ’00)

σ∗
is effectively Presburger.

σ = a1 . . . ak :

x
σn

y

⇐⇒

x + n
k∑

j=1

aj = y and ∀0 ≤ m < n x + m(
k∑

j=1

aj) ≥ cσ
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Iterating Linear Functions

Theorem (Boigelot’98)

f : Zd → Zd function f (x) = Mx + v where M ∈ Zd×d and v ∈ Zd .

y ∈ f ∗(x)

is definable in FO(Z,N,+) if, and only if,

M∗ = {Mn | n ∈ N}

is finite.

Example

Let f (x) = 2x . Then y ∈ f ∗(x) ⇐⇒ ∃n ∈ N | y = 2nx .
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Iterating Guarded Linear Functions

Theorem (Leroux & Finkel ’02)

f : Zd → Zd function defined over a set definable in FO(Z,N,+) by
f (x) = Mx + v where M ∈ Zd×d is such that M∗ is finite and v ∈ Zd .

y ∈ f ∗(x)

is definable in FO(Z,N,+)

Jérôme Leroux (CNRS) Computing Vector Addition System Reachability Sets 25 / 41



Iterating Relations

Theorem (Bozga & Ĝırlea & Iosif ’09)

Let R ⊆ Zd × Zd defined as a conjunction of predicates of the form
+
− x

+
− y ≤ c where x , y are free variables and c ∈ Z. Then R∗ is definable

in FO(Z,N,+).

Example

(x , y)R(x ′, y ′) := x ′ − x ≤ 1 ∧ x − x ′ ≤ −1 ∧ y ′ − y ≤ 2 ∧ y − y ′ ≤ −2
Then (x , y)R∗(x ′, y ′) := x ′ ≥ x ∧ 2(x ′ − x) = (y ′ − y)

Example

Acceleration for timed automata.
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Acceleration

Acceleration Semi-Algorithm:
INPUT : (A, cinit) initialized VAS
OUTPUT : The reachability set.
C← {cinit}
while C is not inductive

select word σ

C←
{
c′

∣∣∣∣∣∣ ∃c ∈ C c
σ∗

c′
}

return C

In theory : terminate on any flat initialized VAS.

In practice : find good heuristics and good symbolic representations.
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Flat Counter Systems Almost Everywhere !

Theorem (Finkel & Leroux ’02, Leroux & Sutre ’05)

Reachability sets of flat Initialized VAS are effectively semilinear.

“Many known semilinear subclasses
of counter automata are flat: rever-
sal bounded counter machines, lossy
vector addition systems with states,
reversible Petri nets, persistent and
conflict-free Petri nets, etc.”
[Leroux & Sutre, ATVA 2005]
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Theorem (Leroux ’13)

An initialized VAS is flat if, and only if, its reachability set is semilinear.

Application:

Completeness of acceleration techniques.

Reachability semilinear ⇒ effectively semilinear.
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Application : Distance of Reachability

Corollary

For any flat initialized VAS < A, cinit > there exists a constant m such
that for every reachable configurations c from cinit, there exists:

cinit
σ

c

with |σ| ≤ m.||c− cinit||∞

There exists σ1, . . . , σk ∈ A∗ such that:

Reachability set from cinit =

c

∣∣∣∣∣∣∣ cinit

σ∗1 . . . σ
∗
k

c


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Well Preorder E on Runs

c′0 c′′0

∗

c0

≥

≤

c0

c′1 c′′1

∗

c1

≥

≤

c1 c2

c′k c′′k

∗

ck

≥

≤

ck

· · ·

· · ·

a1 a2 ak

a1 a2 ak

Theorem (Jančar ’90, Leroux ’11 ’12)

E is a well preorder, i.e.:

∀ρ0, ρ1, · · · ∃i0 < i1 < · · · | ρi0 E ρi1 E · · ·
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Extracting Cycles

c0

+
v0

c0

+
v1

σ0

c1

+
v1

c1

+
v2

σ1

ck
+
vk

ck
+

vk+1

σk

· · ·
a1 a2 ak

=⇒ ∀n ≥ 1

c0

+
nv0

c0

+
nv1

σn0

c1

+
nv1

c1

+
nv2

σn1

ck
+
nvk

ck
+

nvk+1

σnk

· · ·
a1 a2 ak
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The One Period Case

cinit

b

b + p

b + 2p

b + 3p

· · ·
∗

∗

∗

∗

ρn = (cinit

wn
b + np)

E well preorder ⇒ ∃r ≥ 0, s ≥ 1 ρr E ρr+s

∃σ0, a1, σ1 . . . , ak , σk such that ∀n ∈ N:

cinit

σ∗0a1σ
∗
1 . . . akσ

∗
k
b + (r + ns)p
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The Hopcroft-Pansiot 1979 Example

p q

a2 = (0, 0, 0)

a1 = (−1, 1, 0)

a4 = (0, 0, 1)

a3 = (2,−1, 0)

(1,0,0)
a1a2a3a4

(2,0,1)

a2
1a2a2

3a4
(4,0,2)···

a2n
1 a2a2n

3 a4
(2n+1,0,n+1)

Configurations reachable from (1, 0, 0)

{(x , y , z) ∈ N3 | 1 ≤ x + y ≤ 2z}
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Complexity

Theorem (Mayr & Meyer ’81)

There exist VAS with reachability sets of Ackermann cardinal.

σ∗1 . . . σ
∗
k

Existential
Presburger
Formula φ

Semilinear
polynomial in

|σ1|+ · · ·+ |σk |

exponential in

|φ|

Corollary

There exists semilinear VAS such that ∀σ1, . . . , σk

Reachability set =

c

∣∣∣∣∣∣∣ cinit

σ∗1 . . . σ
∗
k

c


implies |σ1|+ · · ·+ |σk | is Ackermann in the size of the VAS.
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Possible Fixes

Acceleration can be combined with:

Abstract interpretation [Gonnord & Halbwachs ’10] [Leroux & Sutre
’07]

Interpolation based techniques [Hojjat & Iosif & Konecny & Kuncak
& Ruemmer ’12] [Caniart & Fleury & Leroux & Zeitoun ’08]
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Open Problems

Open Problems:

∀ semilinear VAS ∃ Ackermann words σ1 . . . σk such that:

Reachability set =

c

∣∣∣∣∣∣∣ cinit

σ∗1 . . . σ
∗
k

c


Ackermann upper bound for semilinear VAS reachability pbm.

Facts:

Proved for bounded VAS [McAloon ’84]

New proof based on bad sequences for the Dickson’s lemma [Figueira
& Figueira & Schmitz & Schnoebelen ’11]
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Conclusion

Theorem

semilinear VAS = flat VAS

Observations:

E is central.

Completeness of tools based on acceleration.

Open problems:

Complexity of the reachability problem for semilinear VAS.
I 2 pbms !

Simple criterion for detecting the VAS not semilinear.

Improve acceleration techniques with on-demand over-approximations.
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