Computing Vector Addition System Reachability Sets

Jérôme Leroux

LaBRI (CNRS and University of Bordeaux), France.

Definition

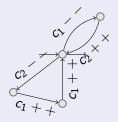
Vector addition system (VAS) : finite set $\mathbf{A} \subseteq \mathbb{Z}^d$. Actions : $\mathbf{a} \in \mathbf{A}$.

Semantics

Definition

Configurations : $\mathbf{x} \in \mathbb{N}^d$. Transition relation : $\mathbf{x} \xrightarrow{\mathbf{a}} \mathbf{y}$ if $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$, $\mathbf{a} \in \mathbf{A}$ and $\mathbf{y} = \mathbf{x} + \mathbf{a}$. $A = \{a_1, a_2\}$ with $a_1 = N = (-1, 1)$ and $a_2 = (2, -1)$ (++1,/3) a_1 (+/1/,/2) (0, 2) a_1 a_1 (1, 1)(2, 1)0, 1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 a_1 a_1 (2, 0)(1, 0)(3, 0) \mathbf{a}_2 a_2

Minsky Machines without = 0

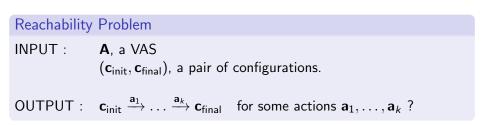


$\sim \begin{array}{c} \text{VAS with states} \\ (-1,1) \\ \hline \\ (2,-1) \end{array}$

VAS $A = \{(-1, 1), (2, -1)\}$

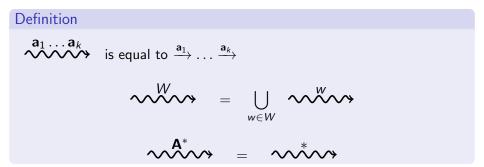
Jérôme Leroux (CNRS)

 \sim



- Many VAS Problems reduce to the VAS reachability:
 - Boundedness / Place boundedness.
 - Safety.
 - Reversibility.
 - Coverability.
 - **۱**...
- Other problems reduce to the VAS reachability.
 - Satisifiability of some logics on data words [Bojanczyk & David & Muscholl & Schwentick & Segoufin '06 '11]
 - Software Model Checking [Heizmann & Hoenicke & Podelski '13]
 - **۱**...

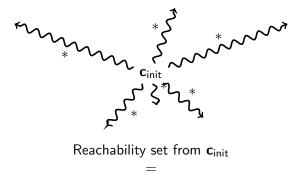
Reachability Relation



Reachability Sets

Definition

Reachability set from
$$\mathbf{c}_{init} = \left\{ \mathbf{c} \mid \mathbf{c}_{init} \quad \checkmark \quad \mathbf{c} \right\}$$



Most precise inductive invariant containing c_{init} .

Jérôme Leroux (CNRS)

Table of Contents

Introduction

2 The Flat Property

- 3 Implementing Acceleration
- 4 Semilinear VAS are Flat
- 5 Extensions and Limitations

A Simple Algorithm

 $\label{eq:constraint} \begin{array}{|c|c|c|c|c|} \hline Reachability Semi-Algorithm:\\ \hline INPUT : (\textbf{A}, \textbf{c}_{init}) \mbox{ initialized VAS}\\ \hline OUTPUT : The reachability set.\\ \textbf{C} \leftarrow \{\textbf{c}_{init}\}\\ \mbox{while } \textbf{C} \mbox{ is not inductive}\\ \mbox{ select an action } \textbf{a}\\ \textbf{C} \leftarrow \textbf{C} \cup \left\{ \textbf{c}' \ \middle| \ \exists \textbf{c} \in \textbf{C} \ \ \textbf{c} \ \overset{\textbf{a}}{\rightarrow} \textbf{c}' \right\}\\ \mbox{return } \textbf{C} \end{array}$

Remarks:

• Correct !

• Terminates if, and only if, the reachability set is finite.

Monotonicity

Lemma (Monotonicity)

For any configuration **c**:

 $\begin{array}{c} \mathbf{c}_{init} & \overset{W}{\longrightarrow} & \mathbf{c}_{final} \\ & \Rightarrow \\ \mathbf{c}_{init} & \overset{W}{\longrightarrow} & \overset{\mathbf{c}_{final}}{+} \\ \mathbf{c} & \mathbf{c} \end{array}$

Proof:

$$\mathbf{x} \xrightarrow{\mathbf{a}} \mathbf{y}$$

 $\Rightarrow \mathbf{y} = \mathbf{x} + \mathbf{a}$
 $\Rightarrow (\mathbf{y} + \mathbf{c}) = (\mathbf{x} + \mathbf{c}) + \mathbf{a}$
 $\begin{array}{c} \mathbf{x} & \mathbf{y} \\ \Rightarrow \mathbf{c} & \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array}$

Example of Computation

$$A = \{a_1, a_2\}$$
 with $a_1 = (-1, 1)$ and $a_2 = (2, -1)$.
 $c_{init} = (1, 0)$.

$$(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$$

By monotonicity $\forall n \ge 0$:
$$(n+1,0) = \begin{pmatrix} 1,0 \\ + \\ (n,0) \end{pmatrix} \xrightarrow{\mathbf{a}_1 \mathbf{a}_2} \begin{pmatrix} 2,0 \\ + \\ (n,0) \end{pmatrix} = (n+2,0)$$

By induction
$$\forall n \geq 0$$
:
(1,0) $(a_1a_2)^n$ $(n+1,0)$.

$$\begin{array}{cccc} & (\mathbf{a}_1 \mathbf{a}_2)^* & \mathbf{c} & \iff & \mathbf{c} \in (1,0) \ + \ \mathbb{N}(1,0) \\ \mathbf{c}_{\mathsf{init}} & & & \mathbf{c} & \iff & \mathbf{c} \in \{(1,0), (0,1)\} \ + \ \mathbb{N}(1,0) \ + \ \mathbb{N}(0,1) \end{array}$$

Acceleration

 $\label{eq:constraint} \begin{array}{c} \underline{\mathsf{Acceleration Semi-Algorithm:}} \\ \hline \mathsf{INPUT}: (\mathbf{A}, \mathbf{c}_{\mathsf{init}}) \text{ initialized VAS} \\ \mathsf{OUTPUT}: \mathsf{The reachability set.} \\ \mathbf{C} \leftarrow \{\mathbf{c}_{\mathsf{init}}\} \\ \mathsf{while } \mathbf{C} \text{ is not inductive} \\ \text{ select word } \sigma \\ \mathbf{C} \leftarrow \left\{\mathbf{c'} \mid \exists \mathbf{c} \in \mathbf{C} \ \mathbf{c} \quad & \checkmark \\ \mathbf{c'} \\ \exists \mathbf{c} \in \mathbf{C} \ \mathbf{c} \quad & \checkmark \\ \mathsf{return } \mathbf{C} \end{array} \right\}$

Remarks:

• Correct !

• Implemented in tools : FAST, LASH, TREX, ...

Flat Initialized VAS

Definition (Flat Initialized VAS)

An initialized VAS $(\mathbf{A}, \mathbf{c}_{init})$ is flat if:

Reachability set from $\mathbf{c}_{init} = \left\{ \mathbf{c} \middle| \begin{array}{c} \mathbf{c}_{init} & \overset{\sigma_1^* \dots \sigma_k^*}{\checkmark} \mathbf{c} \right\} \right\}$

for some $\sigma_1, \ldots, \sigma_k \in \mathbf{A}^*$.

Lemma

There exists a terminating execution of the acceleration semi-algorithm from $(\mathbf{A}, \mathbf{c}_{init})$ if, and only if, $(\mathbf{A}, \mathbf{c}_{init})$ is flat.

Theorem

Assume that the line "select word σ " produces an infinite sequence of words such that any finite sequence is a subsequence, then the acceleration semi-algorithm terminates from $(\mathbf{A}, \mathbf{c}_{init})$ if, and only if, $(\mathbf{A}, \mathbf{c}_{init})$ is flat.

Proof.

$$\text{Just observe that } \mathbf{C} \subseteq \left\{ \mathbf{c}' \; \middle| \; \exists \mathbf{c} \in \mathbf{C} \; \; \mathbf{c} \; \stackrel{\sigma^*}{\checkmark} \quad \mathbf{c}' \right\}.$$

Table of Contents

Introduction

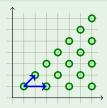
- 2 The Flat Property
- Implementing Acceleration
 - 4 Semilinear VAS are Flat
 - 5 Extensions and Limitations

Presburger Sets

Definition

A Presburger set is a set $\mathbf{X} \subseteq \mathbb{N}^d$ definable in FO($\mathbb{N}, +$).

Example



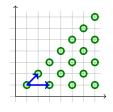
$(1,1) + \mathbb{N}(1,1) + \mathbb{N}(2,0)$

Denoted by:

$$\phi(x, y) := \exists n_1 \exists n_2 \ x = 1 + n_1 + 2n_2 \land y = 1 + n_1$$

Definition (Ginsburg & Spanier '66)

Linear set : $\mathbf{b} + \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_m$ with $\mathbf{b}, \mathbf{p}_1, \dots, \mathbf{p}_m \in \mathbb{N}^d$. Semilinear set : finite union of linear sets.



 $(1,1) + \mathbb{N}(1,1) + \mathbb{N}(2,0)$

Theorem (Ginsburg & Spanier '66)

Presburger sets = semilinear sets

Corollary

Semilinear sets are closed under union, intersection, complement, projection of components, ...

- Given a relation $R \subseteq \mathbb{N}^d \times \mathbb{N}^d$ denoted by a Presburger formula, the following problems are undecidable:
 - R^* is Presburger ? is equal to a given Presburger relation ?
 - ► {y ∈ N^d | (c_{init}, y) ∈ R^{*}} is Presburger ? is equal to a given Presburger set ?
 - A Minsky machine is Flat ? Its reachability set is Presburger ? is equal to a given Presburger set ?

Fireability

Lemma

For any word $\sigma \in \mathbf{A}^*$, there exists a unique configuration \mathbf{c}_{σ} such that:

$$\mathbf{x} \xrightarrow{\sigma} \longleftrightarrow \mathbf{x} \ge \mathbf{c}_{\sigma}$$

$$\mathbf{a}_{1} = \mathbf{x} = (-1, 1) \text{ and } \mathbf{a}_{2} = \mathbf{x} = (2, -1).$$

$$\mathbf{x} \xrightarrow{\mathbf{a}_{1}\mathbf{a}_{1}\mathbf{a}_{2}} \longleftrightarrow$$

$$\mathbf{x} \ge \mathbf{0} \land \mathbf{x} + \mathbf{a}_{1} \ge \mathbf{0} \land \mathbf{x} + \mathbf{a}_{1} + \mathbf{a}_{1} \ge \mathbf{0} \land \mathbf{x} + \mathbf{a}_{1} + \mathbf{a}_{2} \ge \mathbf{0}$$

$$\longleftrightarrow$$

$$\mathbf{x} \ge (0, 0) \land \mathbf{x} \ge (1, -1) \land \mathbf{x} \ge (2, -2) \land \mathbf{x} \ge (0, -1)$$

$$\longleftrightarrow$$

$$\mathbf{x} \ge (2, 0)$$

Proof

 $\sigma = \mathbf{a}_1 \dots \mathbf{a}_k$:

$$\mathbf{x} \quad \overbrace{0 \leq p \leq k}^{\sigma} \mathbf{x} \leftrightarrow \sum_{j=1}^{p} \mathbf{a}_{j} \geq \mathbf{0}$$
$$\longleftrightarrow \\ \mathbf{x} \geq \mathbf{c}_{\sigma}$$

where $\mathbf{c}_{\sigma}(i) = \max_{0 \le p \le k} - \sum_{j=1}^{p} \mathbf{a}_{j}(i)$.

Transitive Closure with Presburger Arithmetic

$$\sim \sigma^*$$
 is effectively Presburger.

 $\sigma = \mathbf{a}_1 \dots \mathbf{a}_k$:

$$\mathbf{x} \quad \overbrace{j=1}^{\sigma''} \mathbf{y} \quad \longleftrightarrow$$
$$\mathbf{x} + n \sum_{j=1}^{k} \mathbf{a}_j = \mathbf{y} \text{ and } \forall 0 \le m < n \ \mathbf{x} + m(\sum_{j=1}^{k} \mathbf{a}_j) \ge \mathbf{c}_{\sigma}$$

Iterating Linear Functions

Theorem (Boigelot'98)

 $f : \mathbb{Z}^d \to \mathbb{Z}^d$ function $f(\mathbf{x}) = M\mathbf{x} + \mathbf{v}$ where $M \in \mathbb{Z}^{d \times d}$ and $\mathbf{v} \in \mathbb{Z}^d$.

 $\mathbf{y}\in f^*(\mathbf{x})$

is definable in $FO(\mathbb{Z}, \mathbb{N}, +)$ if, and only if,

 $M^* = \{M^n \mid n \in \mathbb{N}\}$

is finite.

Example

Let
$$f(x) = 2x$$
. Then $y \in f^*(x) \iff \exists n \in \mathbb{N} \mid y = 2^n x$.

Theorem (Leroux & Finkel '02)

 $f: \mathbb{Z}^d \to \mathbb{Z}^d$ function defined over a set definable in $FO(\mathbb{Z}, \mathbb{N}, +)$ by $f(\mathbf{x}) = M\mathbf{x} + \mathbf{v}$ where $M \in \mathbb{Z}^{d \times d}$ is such that M^* is finite and $\mathbf{v} \in \mathbb{Z}^d$.

 $\mathbf{y} \in f^*(\mathbf{x})$

is definable in $FO(\mathbb{Z}, \mathbb{N}, +)$

Theorem (Bozga & Gîrlea & Iosif '09)

Let $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ defined as a conjunction of predicates of the form $\stackrel{+}{-} x \stackrel{+}{-} y \leq c$ where x, y are free variables and $c \in \mathbb{Z}$. Then R^* is definable in FO($\mathbb{Z}, \mathbb{N}, +$).

Example

$$(x, y)R(x', y') := x' - x \le 1 \land x - x' \le -1 \land y' - y \le 2 \land y - y' \le -2$$

Then $(x, y)R^*(x', y') := x' \ge x \land 2(x' - x) = (y' - y)$

Example

Acceleration for timed automata.

Acceleration

 $\label{eq:constraint} \begin{array}{c} \mbox{Acceleration Semi-Algorithm:} \\ \hline \mbox{INPUT}: (\textbf{A}, \textbf{c}_{init}) \mbox{ initialized VAS} \\ \mbox{OUTPUT}: The reachability set. \\ \textbf{C} \leftarrow \{ \textbf{c}_{init} \} \\ \mbox{while } \textbf{C} \mbox{ is not inductive} \\ \mbox{ select word } \sigma \\ \mbox{ } \textbf{C} \leftarrow \left\{ \textbf{c}' ~ \middle| ~ \exists \textbf{c} \in \textbf{C} \mbox{ c } \checkmark \overset{\sigma^*}{\longrightarrow} \mbox{ c'} \right\} \\ \mbox{ return } \textbf{C} \end{array}$

- In theory : terminate on any flat initialized VAS.
- In practice : find good heuristics and good symbolic representations.

Theorem (Finkel & Leroux '02, Leroux & Sutre '05)

Reachability sets of flat Initialized VAS are effectively semilinear.

"Many known semilinear subclasses of counter automata are flat: reversal bounded counter machines, lossy vector addition systems with states, reversible Petri nets, persistent and conflict-free Petri nets, etc." [Leroux & Sutre, ATVA 2005]

Theorem (Leroux '13)

An initialized VAS is flat if, and only if, its reachability set is semilinear.

Application:

- Completeness of acceleration techniques.
- Reachability semilinear \Rightarrow effectively semilinear.

Application : Distance of Reachability

Corollary

For any flat initialized VAS $< \mathbf{A}, \mathbf{c}_{init} >$ there exists a constant m such that for every reachable configurations **c** from \mathbf{c}_{init} , there exists:

 $\mathbf{c}_{init} \sim \mathbf{c}$

with $|\sigma| \leq m. ||\mathbf{c} - \mathbf{c}_{init}||_{\infty}$

There exists $\sigma_1, \ldots, \sigma_k \in \mathbf{A}^*$ such that:

Reachability set from $\mathbf{c}_{init} = \left\{ \mathbf{c} \middle| \begin{array}{c} \sigma_1^* \dots \sigma_k^* \\ \mathbf{c}_{init} \end{array} \right\}$

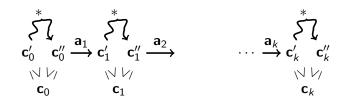
Table of Contents

Introduction

- 2 The Flat Property
- 3 Implementing Acceleration
- 4 Semilinear VAS are Flat
 - 5 Extensions and Limitations

6 Conclusion

Well Preorder \trianglelefteq on Runs



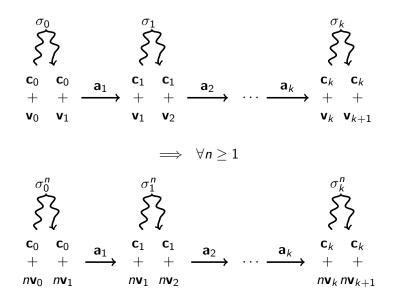
$$\mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \xrightarrow{\mathbf{a}_2} \mathbf{c}_2 \cdots \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$$

Theorem (Jančar '90, Leroux '11 '12) ⊴ is a well preorder, i.e.:

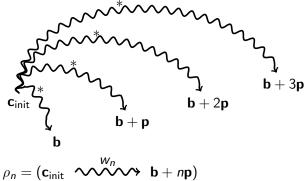
 $\forall \rho_0, \rho_1, \cdots \quad \exists i_0 < i_1 < \cdots \quad | \quad \rho_{i_0} \leq \rho_{i_1} \leq \cdots$

Jérôme Leroux (CNRS)

Extracting Cycles



The One Period Case



$$\mathbf{c}_{\text{init}} \xrightarrow{\sigma_0^* \mathbf{a}_1 \sigma_1^* \dots \mathbf{a}_k \sigma_k^*} \mathbf{b} + (r + ns) \mathbf{p}$$

Jérôme Leroux (CNRS)

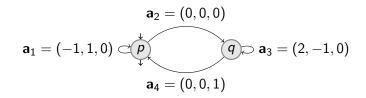
Table of Contents

Introduction

- 2 The Flat Property
- 3 Implementing Acceleration
- 4 Semilinear VAS are Flat
- 5 Extensions and Limitations

6 Conclusion

The Hopcroft-Pansiot 1979 Example



$$\underset{(1,0,0)}{\overset{\mathbf{a}_1\mathbf{a}_2\mathbf{a}_3\mathbf{a}_4}{\overset{\mathbf{a}_1^2\mathbf{a}_2\mathbf{a}_3^2\mathbf{a}_4}}, \underset{(4,0,2)\cdots}{\overset{\mathbf{a}_1^{2^n}\mathbf{a}_2\mathbf{a}_3^{2^n}\mathbf{a}_4}{\overset{(2^{n+1},0,n+1)}{\overset{(2^{n+1},0,n+1}{\overset{(2^{n+1},0,n+1)}{\overset{(2^{n+1},0,n+1}{\overset{$$

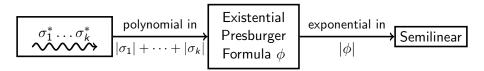
Configurations reachable from (1, 0, 0)

$$\{(x,y,z)\in\mathbb{N}^3\mid 1\leq x+y\leq 2^z\}$$

Complexity

Theorem (Mayr & Meyer '81)

There exist VAS with reachability sets of Ackermann cardinal.



Corollary

There exists semilinear VAS such that $\forall \sigma_1, \ldots, \sigma_k$

Reachability set =
$$\left\{ \mathbf{c} \middle| \begin{array}{c} \sigma_1^* \dots \sigma_k^* \\ \mathbf{c}_{init} & \mathbf{c}_k^* \\ \mathbf{c}_k & \mathbf{c} \end{array} \right\}$$

implies $|\sigma_1| + \cdots + |\sigma_k|$ is Ackermann in the size of the VAS.

Acceleration can be combined with:

- Abstract interpretation [Gonnord & Halbwachs '10] [Leroux & Sutre '07]
- Interpolation based techniques [Hojjat & losif & Konecny & Kuncak & Ruemmer '12] [Caniart & Fleury & Leroux & Zeitoun '08]

Open Problems

Open Problems:

• \forall semilinear VAS \exists Ackermann words $\sigma_1 \dots \sigma_k$ such that:

Reachability set =
$$\left\{ \mathbf{c} \middle| \begin{array}{c} \sigma_1^* \dots \sigma_k^* \\ \mathbf{c}_{\text{init}} \end{array} \right\}$$

.

• Ackermann upper bound for semilinear VAS reachability pbm.

Facts:

- Proved for bounded VAS [McAloon '84]
- New proof based on bad sequences for the Dickson's lemma [Figueira & Figueira & Schmitz & Schnoebelen '11]

Table of Contents

Introduction

- 2 The Flat Property
- 3 Implementing Acceleration
- 4 Semilinear VAS are Flat
- 5 Extensions and Limitations

Conclusion

Theorem

semilinear VAS = flat VAS

Observations:

- Completeness of tools based on acceleration.

Open problems:

- Complexity of the reachability problem for semilinear VAS.
 - 2 pbms !
- Simple criterion for detecting the VAS not semilinear.
- Improve acceleration techniques with on-demand over-approximations.