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Plan for today

Goals of the Tutorial

Hybrid systems: discrete and continuous dynamics

Strong verification capabilities required

Techniques based on Satisfiability Modulo Theories

Techniques specific to hybrid systems

Joint work with Sergio Mover and Stefano Tonetta
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Structure of the Tutorial

1 From Complex Embedded Systems to Hybrid Automata
Complex Embedded Systems
The formalism: Hybrid Automata
Verification of Hybrid Automata

2 Satisfiability Modulo Theories

3 SMT-based Verification of Symbolic Transition Systems

4 SMT-based verification of Hybrid Automata - Reachability
Global-time semantic
Local-time semantic
Shallow-synchronization

5 SMT-based verification of Hybrid Systems - Scenario Feasibility

6 SMT-based Analysis of Requirements for Hybrid Systems

7 Conclusions and future work
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Outline

1 From Complex Embedded Systems to Hybrid Automata
Complex Embedded Systems
The formalism: Hybrid Automata
Verification of Hybrid Automata

2 Satisfiability Modulo Theories

3 SMT-based Verification of Symbolic Transition Systems

4 SMT-based verification of Hybrid Automata - Reachability
Global-time semantic
Local-time semantic
Shallow-synchronization

5 SMT-based verification of Hybrid Systems - Scenario Feasibility

6 SMT-based Analysis of Requirements for Hybrid Systems

7 Conclusions and future work
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Complex embedded systems

Designing complex systems
Automotive
Railways
Aerospace
Industrial production

Sources of complexity:
Hundreds of functions
Networked control
Real-time constraints
Complex execution model with mixture of real-time and
event-based triggers
System composed of multiple heterogeneous subsystems

Critical Functions:
ABS, drive-by-wire
Operate switches, level crossings, lights
Manage on-board power production

Conflicting objectives:
Avoid crashes vs move trains
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Examples of complex embedded system

The European Train Control System
Supervision of movement of trains
Requirements on location and speed
Protocols between on-board train systems and track-side systems
Communication by radio (radio block centers) or on-track physical
devices (balises).

The framework must be able to express
classes of entities and their relationships;
integer and real attributes of the objects;
constraints on the admitted configurations;
constraints on the admitted temporal evolutions:

instantaneous changes of the configurations

temporal constraints on the movement of
objects.

} Hybrid
Systems
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Supporting the design process
How do we support the design?
Requirements validation:

Are the requirements flawed?

Functional correctness
Does the system satisfy the
requirements?

Safety assessment
Is the system able to deal with
faults?
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Another example application

a pipe laying vessel

effectively a floating factory

retrieval of pipes from holds, routing through prefabrication
stations, welding

variable time/speed of welding operations

nondeterminism, faults, operations in degraded modes

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 8 / 118



From design to operation

Planning
plan how to achieve desired firing sequence
retrieve pipes from holds, pre-weld, send to firing line, final weld

Execution Monitoring
welding may fail, activities can take more time than expected
plant may fail

Fault Detection, Fault Identification/Isolation
is there a problem? where is it?

Fault Recovery
put off-line problematic equipment

Replanning
identify alternative course of actions, e.g. reroute pipes
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Operation Phases
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The design-to-operation continuum

Key requirement: reasoning about evolution of hybrid systems
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Continuous evolution plus discrete evolution

CONTINUOUS COMPONENT
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train’s speed

train’s location

MA’s Target Speed

Discrete transitions:
instantaneous change in (discrete) state of the system

Continuous transitions:
continuous variables evolve over time according to specified laws
discrete state does not change
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Hybrid Automata (HA)

Hybrid automata are a widely accepted modeling framework for
systems with discrete and continuous variables.

Discrete instantaneous mode switches.

Continuous evolution according to flow conditions.
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Hybrid Automaton - formal definition

A Hybrid Automaton is a tuple 〈Q,A,Q0,R,X , µ, ι, ξ, θ〉 where:

Q is the set of locations,

A is the set of events,

Q0 ⊆ Q is the set of initial locations,

R ⊆ Q × A × Q is the set of discrete transitions,

X is the set of continuous variables,

µ : Q → P(X , Ẋ ) is the flow condition,

ι : Q → P(X ) is the initial condition,

ξ : Q → P(X ) is the invariant condition,

θ : R → P(X ,X ′) is the jump condition.
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Hybrid Automata: evolution

state in Q × (X → R)

discrete transition: location can change, values to continuous
variables may change according to jump condition

time elapse: location does not change, continuous variables
evolve according to flow conditions, while satisfying invariants
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Hybrid Automata: some subclasses

Timed Automata: For all x ∈ X ẋ = 1, each P(X ) are of the form
x ⊲⊳ y or x ⊲⊳ a, where x , y ∈ X and a ∈ R.

Stopwatch Automata: For all x ∈ X ẋ = 1 or ẋ = 0.

Rectangular Automata: LHA with the restriction that for all x ∈ X ,
a ≤ ẋ ≤ b, a,b ∈ R.
Linear Hybrid Automata (LHA):

P(X , Ẋ ),P(X),P(X ′) are a Boolean combinations of linear
inequalities.
The flow condition contains only variables in Ẋ .
The invariants are convex.
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Hybrid Automata Network (HAN)

Automata move asynchronously on local events (τ ).
Automata synchronize on shared events.
The time elapse is a synchronization event (global-time
semantic [Henzinger 96]).
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HAN - formal definition

N = H1|| . . . ||Hn is a network of Hybrid automata:

For all 1 ≤ i ≤ n, Hi = 〈Qi ,Ai ,Q0i ,Ri ,Xi , µi , ιi , ξi , θi〉.

H1|| . . . ||Hn denotes the parallel composition of H1, . . . ,Hn.

In our settings, for all 1 ≤ i < j ≤ n Xi ∩ Xj = ∅ (i.e. the set of
continuous variables of the hybrid automata are disjoint)

Notation:

Shared events of Hi : Ai ∩
⋃

j 6=i Aj .

Local events of Hi : τi = Ai \
⋃

j 6=i Aj .
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HAN semantics as Labeled Transition Systems
(LTS)

The semantics of a HAN can be provided in terms of a network of
Labeled Transition Systems (LTS).

LTS network: parallel composition of two or more LTSs
S1|| . . . ||Sn.
An LTS S is a tuple 〈Q,A,Q0,R〉 where:

Q is the set of states,
A is the set of actions/events (also called alphabet),
Q0 ⊆ Q is the set of initial states,
R ⊆ Q × A × Q is the set of labeled transitions.

Remark: S may have an infinite number of states, transitions and
events.
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HAN Semantics as LTS: General idea

The semantic of the HA H is defined by the LTS S.

A state in S is a location and an assignment to the continuous
variables of H.

A label in S is an event of H (discrete transition) or a duration
(continuous evolution).
We have a transition in S:

For every discrete transitions of H (“obvious”).
For every possible value of the duration of the continuous evolution
(i.e. the continuos evolution is mapped into an infinite number of
transitions).
Invariants must hold throughout the timed transition. This results in
a universally quantified condition, and may affects the existence of
a transition for a specific value.

The semantics of a HAN is obtained composing a network of LTSs.
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HAN Semantics as LTS

The semantic of H = H1|| . . . ||Hn is defined by
NGLT IME(H) = S1|| . . . ||Sn where:

states
Q′

i = {〈q, x〉 | q ∈ Qi , x ∈ R
|Xi |},

labels
A′

i = Ai ∪ {〈TIME, δ〉 | δ ∈ R},

initial states
Q′

0i = {〈q, x〉 | q ∈ Q0i , x ∈ ιi(q)},

(instantaneous) transitions R′
i =

{〈〈q, x〉,a, 〈q′, x ′〉〉 | 〈q,a,q′〉 ∈ Ri , 〈x , x
′〉 ∈ θi(q,a,q′), x ∈

ξi(q), x
′ ∈ ξi(q′)}

(timed) transitions
{〈〈q, x〉, 〈TIME, δ〉, 〈q, x ′〉〉 | there exists f satisfying µi(q) s.t.
f (0) = x , f (δ) = x ′, f (ǫ) ∈ ξ(q), ǫ ∈ [0, δ]}.
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HAN - some remarks

networks of timed automata include all the difficulties of
asynchronous models (typically explicit state) and real-time
models (typically require symbolic reasoning of some form)
timed transitions require that the invariants hold for all the points
within the duration

formally, it requires dealing with universal quantification
often eliminated by means of convexity arguments (but
see [CMT12])
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Which focus on hybrid systems?

Two “classes” of hybrid systems:
component level, detailed model of physical behaviour

relatively small discrete space
one/few components
complex dynamics (nontrivial differential equations)
gearbox, steering control algorithm, pacemaker

system level, “coarse” model
large discrete space
many components
dynamics of limited complexity
space exploration rover, satellite, pipe laying vessel
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Verification techniques

1 Reachability analysis.
2 Deductive verification.
3 Abstraction.

See also [Alu11] for a survey.
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Reachability analysis

Prove that a safety property ϕ holds by a fixed-point computation of the
reachable states.
Representative tools:

HYTECH [HHWT97]:
Represents the reachable state space using polyhedra.
Handles LHA.

D/DT [ADM02]:
Handles non-linear hybrid automata.
Computes an overapproximation of the reachable states using
Polyhedra (flowpipe approximation).

PHAVER and SPACEEX [Fre08, FGD+11]:
Different representation of the state space: polyhedra, support
functions (approximating!).
Handles non-linear hybrid automata.

Techniques based on DBM warping [LWM+11]

And many more!
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Deductive Verification
Barrier certificates [PJ04]:

Applied to the dynamical system (i.e. a single location).
Identifies a function ψ such that:

Is non-negative in the initial states.
Is negative in the bad states.
The sign of ψ is invariant for all the system trajectories.

KEYMAERA [PQ08]:
Differential invariants.
Uses quantifier elimination procedures on polynomials.
Even higher degree of parameterization
System under analysis represented in Dynamic logic
Deductive techniques, based on interactive theorem proving.
Impressive case studies, requires substantial human effort.
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Abstraction techniques

Linear Phase-Portrait Partitioning [HWT95]
Abstract complex dynamics splitting each location in multiple
locations.
Each location has a simple dynamic of the form a ≤ ẋ ≤ b, a, b ∈ R

which approximate the complex dynamic in a specific interval.

Predicate Abstraction [ADI06, Tiw08]
A set of predicates defines a finite-state abstraction of the hybrid
systems.
The finite-state system can be analyzed using finite-state
techniques.
Hard to choose the “right” predicates to use and to compute the
resulting abstraction.
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Here: SMT-based verification of HA

In the rest of this talk:

focus on systems with large state space, coarse dynamics

fully symbolic, automated techniques

from SAT-based to SMT-based algorithms
dedicated techniques for hybrid systems

exploit network structure with local time semantics
analyze scenarios expressed as MSC’s
analysis of requirements for hybrid systems
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Outline

1 From Complex Embedded Systems to Hybrid Automata
Complex Embedded Systems
The formalism: Hybrid Automata
Verification of Hybrid Automata

2 Satisfiability Modulo Theories

3 SMT-based Verification of Symbolic Transition Systems

4 SMT-based verification of Hybrid Automata - Reachability
Global-time semantic
Local-time semantic
Shallow-synchronization

5 SMT-based verification of Hybrid Systems - Scenario Feasibility

6 SMT-based Analysis of Requirements for Hybrid Systems

7 Conclusions and future work
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Satisfiability Modulo Theories

Check satisfiability of first order formulae

with respect to background theory
Underlying technology:

SAT solver behaves as enumerator
theory (constraint) solver used to check feasibility

Status of the research field:
a standardized SMT-LIB2.0 language and a library of benchmarks
http://www.smt-lib.org
a yearly competition http://www.smt-comp.org
a yearly SMT workshop
SMT solvers: Yices, OpenSMT, Z3, CVC, iSAT, HySAT, MathSAT
A (yearly?) school: Boston (2011), Trento (2012) w/ SAT’12
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SMT: useful theories

Satisfiability of a first order formula...

where the atoms are interpreted modulo a background theory
Theories of practical interest

Equality and Uninterpreted Functions (EUF)
x = f(y), h(x) = g(y)

Difference constraints (DL)
x − y ≤ 3

Linear Arithmetic
3x − 5y + 7z ≤ 1
reals (LRA), integers (LIA)

Arrays (Ar)
read(write(A, i, v), j)

Bit Vectors (BV)
x[15 : 8] :: (y[7 : 0] + 0d8 3) = (z&&w)

Their combination
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SMT checking

SMT as an extension of boolean SAT

Some atoms have non-boolean (theory) content
A1 : x − y ≤ 3
A2 : y − z = 10
A3 : x − z ≥ 15

Theory interpretation for individual variables, constants, functions
and predicates
if x = 0, y = 20, z = 10
then A1 = T, A2 = T, A3 = F

Interpretations of atoms are constrained

A1, A2 and A3 can not be all true at the same time

Boolean reasoning + constraint solving
SAT solver for boolean reasoning
theory solvers to interpret numerical constraints
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SMT: search space

DPPL-style search
SAT solver looks for satisfying assignment to boolean abstraction of
the formula, ignoring theory content
literals on stack identify a conjunction (set) of theory constraints

the same atom may be associated to a constaint or its negation,
depending o the truth value it is assigned to

if set of constraints solvable, then return SAT
if set of constraints unsatisfiable, backtrack
if search space exhausted, return UNSAT
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SMT solvers in practice

In practice, the integration is very tight
SAT solver working as an enumerator
Theory solver follows the stack-based search

Inconsistent partial assignments are pruned on the fly
conflicts clauses learnt from theory reasoning
used to drive search at the boolean level

Satisfiability Modulo Theories: a sweet spot?
increase expressiveness
retain efficiency of boolean reasoning
Trade off between expressiveness and reasoning
SAT solvers: boolean case, automated and very efficient
theorem provers: general FOL, limited automation
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SMT: useful functionalities

Similarly to SAT solvers, SMT solvers expor

Model construction

Incremental interface

Unsatisfiable core

Proof production

Interpolation

AllSMT
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AllSMT

AR(P,P ′) =̇ ∃XX ′.(R(X ,X ′) ∧
∧

i

(Pi ↔ ψi(X )) ∧
∧

i

(P ′
i ↔ ψi(X

′)))

AllSMT - a particular form of existential quantification
Enumerate all satisfying assignments to Pi by generalizing AllSAT
to AllSMT [LNO06]
Extend BDD-based existential quantification to deal with theory
constraints [CCF+07]

Build a boolean abstraction of the formula to quantify
Interpret each boolean variable as a theory constraint
Drive SMT solver while traversing BDD (NOT a theory solver)

Structure aware existential quantification [CDJR09]
Exploit the available problem structure

At high level: structure of system being abstracted, modules scope of
variables, nature of transitions
At low level: structure of quantified formula, reduce scope of
quantification
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The MathSAT project

MathSAT is an SMT solver developed in Trento since 2001

Joint project of Fondazione Bruno Kessler (FBK) and the
University of Trento

http://mathsat.fbk.eu/

Latest available version: MathSAT5
Current team:

Alessandro Cimatti, Alberto Griggio, Bas Schaafsma, Roberto
Sebastiani

Past contributors:
Gilles Audemard, Piergiorgio Bertoli, Marco Bozzano, Roberto
Bruttomesso, Anders Franzén, Tommi Junttila, Veselin Kirov, Artur
Kornilowicz, Jeremy Ridgeway, Peter van Rossum, Alessandro
Santuari, Stephan Schulz, Cristian Stenico
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MathSAT: features

Supported interaction modes:

Languages: SMT-LIB 1 and SMT-LIB 2

In-memory API: C++, Python

Supported theories:

EUF , BV, RDL, IDL, LRA, LIA, memories (AR)
Their combination

via Delayed Theory Combination
via Ackermanization Reduction

Functionalities:

Incremental Solving

Model extraction

AllSMT

Unsatisfiable core extraction

Interpolation

Costs
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MathSAT: some highlights

The “lazy approach” to SMT [ABC+02]
SAT solver as model enumerator
tight integration between SAT solver and theory solver

Layering [BBC+05]
cheap solvers first

Delayed Theory Combination [BCF+09]
use SAT search to deal with interface equalities
superseded by model-based combination

Unsat core extraction [CGS11]
reduction to boolean unsatisfiable core extraction
based on reuse of theory lemmas computed during search

Interpolation [CGS08, CGS09, CGS10]
avoid “proof theoretic” reasoning
based on information produced by theory solvers

Bit-vectors [BCF+07, FCN+10]
experiments with various approaches
rewriting, lazy bit-blasting, underapproximation
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MathSAT for Microcode Verification
Result of long-standing collaboration with Intel Haifa

BoWLing (2003-2006)
Wolfling GRC CADTS Verification 2009-TJ-1880
WOLF (2013-2015)

Microcode
expand complex ISA instructions to native micro-instructions
similar to low level assembly, highly optimized

Perceived as critical problem in practice
a flow for the verification of microcode
cycle-accurate equivalence checking based on path enumerations

Bit-precise reasoning required
based on boolean SAT solving
solving VC’s requires significant portion of overall time

Experiment with word-level reasoning
use MathSAT instead of internal SAT solver
black-box replacement: no idea on high level algorithm
a sequence of verification problems
not a nice sequence of “path extension”
the correlation between subsequent problems is hidden

MathSAT now shipped with design environment for microcode
More details in award-winning FMCAD’10 paper [FCN+10]
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Outline

1 From Complex Embedded Systems to Hybrid Automata
Complex Embedded Systems
The formalism: Hybrid Automata
Verification of Hybrid Automata

2 Satisfiability Modulo Theories

3 SMT-based Verification of Symbolic Transition Systems

4 SMT-based verification of Hybrid Automata - Reachability
Global-time semantic
Local-time semantic
Shallow-synchronization

5 SMT-based verification of Hybrid Systems - Scenario Feasibility

6 SMT-based Analysis of Requirements for Hybrid Systems

7 Conclusions and future work
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Symbolic Transition Systems

LTS with logic-based, symbolic representation.
States as assignments to variables ranging over real, integers, bit
vectors, arrays, ...
Transitions as pairs of states.
Symbolic representation: use formulae to describe sets of states and
transitions

Vectors of state variables: current state X , next state X ′

Initial condition I(X )

Transition relation R(X ,X ′)

Bad states B(X )

Key difference wrt finite state model checking

X ,X ′ do not range only over boolean variables

I,R,B are SMT formulae
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From SAT-based to SMT-based verification

Same representation, extend algoriths from SAT to SMT:

Bounded model checking

Induction

Interpolation-based verification

Abstraction/refinement

IC3

In many cases, no longer guaranteed to converge.
Useful SMT functionalities:

Incrementality

Model extraction

Unsat core extraction

Interpolation

Quantifier elimination / AllSMT
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SMT-based bounded model checking

State variables replicated k times
X0,X1, . . . ,Xk−1,Xk

Look for bugs of increasing length
I(X0) ∧ R(X0,X1) ∧ . . . ∧ R(Xk−1,Xk ) ∧ B(Xk)

bug if satisfiable

increase k until . . .
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SMT-based k-induction

Prove absence of bugs by induction
I(X0) ∧ B(X0)
¬B(X0) ∧ R(X0,X1) ∧ B(X1)
. . .
I(X0) ∧ R(X0,X1) ∧ . . . ∧ R(Xk−1,Xk ) ∧ B(Xk)
¬B(X0) ∧ R(X0,X1) ∧ . . . ∧ ¬B(Xk−1) ∧ R(Xk−1,Xk ) ∧ B(Xk )

Proved correct if unsatisfiable (and no bugs until k)

Invariant strengthening, simple path condition, . . .

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 45 / 118



SMT-based interpolation

An interpolant for an unsatisfiable formula

Φ1(X ,Y ) ∧Φ2(Y ,Z )

is a formula Itp(Y ) such that:
Φ1(X ,Y ) → Itp(Y )
Itp(Y ) ∧ Φ2(Y ,Z ) is unsatisfiable
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SMT-based interpolation

Φ1(X0,X1)
︷ ︸︸ ︷

I(X0) ∧ R(X0,X1) ∧
︸︷︷︸

Itp(X1)

Φ2(X1,...,Xk )
︷ ︸︸ ︷

R(X1,X2) . . . ∧ R(Xk−1,Xk ) ∧ B(Xk )

P
re

ci
se

Can reach B(X) in k−1 stepsReachable from I(X)

O
ve

ra
pp

ro
xi

m
at

ed

B

BI

I

Itp(X1) = Itp(R, I(X0), k)
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SMT-based interpolation

P
re

ci
se

Can reach B(X) in k−1 stepsReachable from I(X)

O
ve

ra
pp

ro
xi

m
at

ed

B

BI

I

Precise reachability
R0 = I
Ri = Img(R,Ri−1) ∪Ri−1

Interpolation based reachability
Itp0 = I(X1)
Itpi = Itp(R, Itpi−1, k) ∪ Itpi−1
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CEGAR loop

Abstraction

Counter-example
Analysis

Model CheckRefinement

CProg

AProg[i]MoreInfo

Unsafe SafeACex

No CCex

CCex
No ACex
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction

State vars X

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 50 / 118



CEGAR based on Predicate Abstraction

State vars X
I(X )
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CEGAR based on Predicate Abstraction

State vars X
I(X )

R(X ,X ′)
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CEGAR based on Predicate Abstraction

ψ0(X)

State vars X
I(X )

R(X ,X ′)
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CEGAR based on Predicate Abstraction

ψ0(X)
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CEGAR based on Predicate Abstraction

P0 ψ0(X)
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CEGAR based on Predicate Abstraction

P0 ψ0(X)¬P0
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CEGAR based on Predicate Abstraction

P0 ψ0(X)¬P0

ψ1(X)

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 50 / 118



CEGAR based on Predicate Abstraction

P0 ψ0(X)¬P0

P1

ψ1(X)
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CEGAR based on Predicate Abstraction

P0 ψ0(X)¬P0

P1

ψ1(X)

¬P1
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CEGAR based on Predicate Abstraction

P0 ψ0(X)¬P0

P1

ψ1(X)

¬P1

00

10 11

01
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction

P0¬P0

P1

¬P1

Abstract State vars P
AI(P)

AR(P,P ′)
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10 11
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction

P0¬P0

P1
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction

P0¬P0
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¬P2
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CEGAR with Predicate Abstraction

Predicate
Abstraction

Counter-example
Analysis

Model CheckRefinement

Preds[0]

CProg

AProg[i]NewPreds[i+1]

Unsafe SafeACex

No CCex

CCex
No ACex
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CEGAR without AllSMT
Abstract transition system computed with AllSMT:

Exponential in the number of predicates.
Major bottleneck of CEGAR.
Prevents the analysis of the abstract system.

Main idea [Ton09]: avoid computing the abstract state space
how: embedding the abstraction definition into the BMC/k-induction
encodings;
abstract transitions implicitly computed by the SMT solver;
similar to lazy abstraction but completely symbolic and without any
image computation/quantifier elimination.

Applicable when the abstraction α induces an equivalence relation
EQα among the concrete states.

For predicate abstraction, EQα(X ,X ′) =
∧

P∈P P(X) ↔ P(X ′).

Example of application:
Concrete unrolling:

∧

0≤h≤k−1 R(Xh,Xh+1)
Abstract unrolling:

∧

0≤h≤k−1 R(Xh,X ′
h)∧EQα(X ′

h,Xh+1)
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Other symbolic approaches for STS

not SMT-based, combines boolean reasoning with constraint
solving
Functionally Reduced AIG’s (FRAIGs) [DDH+07]

Use And-Inverter-Graphs (AIGs) to represent a set of states of the
system.
Pre-Image computation via a specialized quantifier-elimination
technique.
SMT-based fixed-point.

RED [Wan04]
Hybrid-Restriction Diagrams (HRDs): BDD-like data structure to
represent the state space.
Predicates of the form

∑
ai · xj ⊲⊳ a

HRD node: right-hand-side of the predicate (
∑

ai · xj ).
HRD arc: left-hand-side of the predicate (i.e. a).
Representation for the union of a set of convex polyhedra.
Non-canonical.
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Outline

1 From Complex Embedded Systems to Hybrid Automata
Complex Embedded Systems
The formalism: Hybrid Automata
Verification of Hybrid Automata

2 Satisfiability Modulo Theories

3 SMT-based Verification of Symbolic Transition Systems

4 SMT-based verification of Hybrid Automata - Reachability
Global-time semantic
Local-time semantic
Shallow-synchronization

5 SMT-based verification of Hybrid Systems - Scenario Feasibility

6 SMT-based Analysis of Requirements for Hybrid Systems

7 Conclusions and future work
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Linear Hybrid Automata as STS (1/1)

H := 〈Q,A,Q0,R,X , µ, ι, ξ, θ〉 is encoded in the STS
S = 〈V ,W, INIT, INVAR, TRANS〉, where:

V := {boolean encoding of Q} ∪ X ∪ t ,
t ∈ R counts the amount of time elapsed.
Shorthand: loc = q is the encoding of the location q.

W := {boolean encoding of the set A ∪ {T, S}},
T is the “time elapse” event.
S is the “stutter” event.
Shorthand: ε = a is the encoding of the event a.

INIT := t = 0 ∧
∧

q∈Q(loc = q → ι(q)(X ));

INVAR :=
∧

q∈Q(loc = q → ξ(q)(X ));

TRANS :=
∧

q∈Q(loc = q →
(TIMEDq ∨

∨

〈q,a,q′〉∈R UNTIMED〈q,a,q′〉)) ∨ STUTTER
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Linear Hybrid Automata as STS - (2/2)

STUTTER := all the variables do not change.

UNTIMED〈q,a,q′〉 := ε = a ∧ loc′ = q′ ∧ t ′ = t ∧ θ(〈q,a,q′〉)(X ,X ′).

TIMEDq := ε = T ∧ loc′ = loc ∧ t ′ > t ∧ µ(q)
(t ′−t)

(X ,X ′),

where µ(q)
(t ′−t)

encodes the time elapse step:
Note: µ(q) :=

∑
a · ẋ ⊲⊳ b, a, b ∈ R.

Time elapse step:
We replace each ẋ in µ(q) by x′−x

t′−t .

Since t ′ > t : µ(q)
(t′−t)

:=
∑

a · (x ′
− x) ⊲⊳ (t ′ − t) · b.

Remark : The encoding may be extended to a subclasses of
non-linear Hybrid Automata. In that case, we need a special
handling of invariants to get rid of a universal quantifier.
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Encoding of HAN - Global-time semantics

We encode the network of LHAs N = H1|| . . . ||Hn in the STS SN .
SN is the composition of:

The STSs S1, . . . ,Sn which encodes H1, . . . ,Hn.
The synchronization constraints SYNC:

SYNC :=
∧

1≤j<h≤n

∧

a∈Aj∩Ah∪{T}

(εj = a ↔ εh = a)

∧
∧

a∈(Aj\Ah)

(εj = a → εh = S)

∧
∧

a∈(Ah\Aj )

(εh = a → εj = S)

SYNC encodes the global-time semantics.

In the actual encoding, the variable TIME is replaced by a variable δ, which
represents the time elapsed during the continuous transition (t ′ = t).
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Local-Time semantics
The time evolves independently in each automaton:

Local time scale.
The continuous evolution is a local transition.

Automata agree on the time elapsed:
On synchronizations.
At the end of a run.

Local time:
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S = stutter event. τ = local event (no stutter or time).
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Equivalence of the two semantics

Definition (Synchronized state)
A state is synchronized if all local clocks agree on the amount of time
elapsed.

Theorem ([BJLY98])

A state s is reachable in the global-time semantics iff there exists a
synchronized state s′ reachable in the local-time semantic.
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Encoding of HAN - local-time semantics

The local-time and the global-time semantics differ for the
synchronization constraint SYNC:

SYNC :=
∧

1≤j<h≤n

∧

a∈Aj∩Ah

(εj = a ↔ εh = a) ∧ (εj = a → tj = th)

∧
∧

a∈(Aj\Ah)∪{T}

(εj = a → εh = S)

∧
∧

a∈(Ah\Aj )∪{T}

(εh = a → εj = S)

SYNC encodes the local-time semantics.
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Step semantics

Step semantics:

Exploit the independence of the local transitions.

Relax the SYNC constraint such that independent transitions are
executed in parallel.

SYNCstep :=
∧

1≤j<h≤n

∧

a∈Aj∩Ah

(εj = a ↔ εh = a) ∧

(εj = a → tj = th)

Orthogonal to global-time or local-time semantics.
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Traditional composition

Traditional semantics of a network of systems is based on
interleaving.

Required construction of a monolithic hybrid automaton based on
the composition of the systems.

Destroyed structure of the network and results in a loss of
efficiency, especially using bounded model checking techniques.
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Interleaving effect
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Alternative composition

Idea:
shallow synchronization to improve reachability encoding.

Shallow synchronized runs:
set of local traces compatible wrt synchronization and time.

Exploiting local clocks:
Independent evolution of time.
Time is synchronized only on shared events.
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Local time effect
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Local time effect
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Local time effect
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Shallow synchronization

Shallow synchronization:
for all systems Sj and Sh, the sequence of shared events performed
by Sj and Sh is the same;
for all systems Sj and Sh, for all events a shared by Sj and Sh, Sj

performs the i-th occurrence of a at the same time Sh performs the
i-th occurrence of a;
for all systems Sj and Sh, the time in the last step of Sj is the same
to the time in the last step of Sh.

Different variants of the encoding:
Enumerating all possible combinations of occurrences.
Exploiting uninterpreted functions.

Different interaction with the solver:
Adding sync while unrolling vs after unrolling.
Depth-first search vs. breadth-first search.
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Star-shape Fischer
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Hybrid Systems in HyCOMP

nuXmv:
Model checker based on:

the NUSMV model checker
the MATHSAT SMT solver.

Modeling of symbolic (finite- and infinite-state) transition systems

Functional verification, requirement analysis

safety analysis (e.g. fault-trees and FMEA tables generation),
diagnosability.

Hybrid Systems in HyCOMP:

HYDI language.

Automatic translation from HYDI to the nuXmv language (i.e.
symbolic transition systems).

Scenario-verification.
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HYDI: (HYbrid systems with Discrete Interaction)

Symbolic representation of HAN.
nuXmv language can represent:

Discrete systems.
Synchronous components.

HyDI language is extended to represent [SEAA11]:
Continuous features:

Continuous variables:
VAR x : continuous;

Flow condition.
FLOW location = Ready -> der(x) <= 1.1;

Network of automata:
Instantiation of the automata of the network.
MODULE main
VAR rod1 : Rod;

Synchronization constraints:
SYNC rod1, controller EVENT add, add1;
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Hybrid Automata in H YDI
MODULE RodType
VAR
location : {Ready,Recovering,In};
x : continuous;
EVENT tau,Remove,Add;
-- Initial conditions
INIT location = Ready & x=0;
INVAR -- Invariants
(location = In -> x<=5.9) &
(location = Recovering -> x<=16)
-- Flow conditions
FLOW 0.9<=der(x) & der(x)<=1.1
TRANS -- Discrete transitions
case

EVENT=Add : location=Ready & next(location)=In & next(x)=0;
EVENT=Remove : location=In & next(location)=Recovering &

next(x)=0;
EVENT=tau : location=Recovering & next(location)=Ready &

next(x)=x;
esac;

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1
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Hybrid Automata Network in H YDI

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add2/x ′ := 0

Remove2/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod2

No Rod

ẋ ∈ [0.9, 1.1]
x ≤ 16

x = 0

Rod 1

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Rod 2

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

x ≥ 16/Add1/x ′ := 0

x ∈ [5, 5.9]/Remove1/
x ′ := 0

x ≥ 16/Add2/x ′ := 0

x ∈ [5, 5.9]/Remove2/
x ′ := 0 Controller

Add1,Remove1 Add2,Remove2

Rod1 Rod2

Controller

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add2/x ′ := 0

Remove2/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod2

No Rod

ẋ ∈ [0.9, 1.1]
x ≤ 16

x = 0

Rod 1

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Rod 2

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

x ≥ 16/Add1/x ′ := 0

x ∈ [5, 5.9]/Remove1/
x ′ := 0

x ≥ 16/Add2/x ′ := 0

x ∈ [5, 5.9]/Remove2/
x ′ := 0 Controller

Add1,Remove1 Add2,Remove2

Rod1 Rod2

Controller

-- Instantiation of the automata of the network
VAR rod1 : RodType;
VAR rod2 : RodType;
VAR controller : ControllerType;
-- Pairwise synchronization constraints
SYNC rod1, controller EVENT add, add1;
SYNC rod2, controller EVENT add, add2;
SYNC rod1, controller EVENT remove, remove1;
SYNC rod2, controller EVENT remove, remove2;
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Scenario feasibility

〈m, ϕ〉: Message sequence chart (MSC). m with constraints ϕ.

m: parallel composition of instances.
ϕ = ϕg ∧ϕ1 ∧ . . .∧ϕn: formulas over the

network variables on synchronization.
Global (ϕg): over all the network
variables.

Local ϕi : over variable of Hi .

Rem2

Add2 time ≥ 19

Add1

Rem1

Rem1

time ≥ 80

Add1

time ≤ 19

Rod2ControllerRod1

MSC feasibility: the MSC 〈m, ϕ〉 is feasible in the network H iff there
exist a run in H compatible with 〈m, ϕ〉.
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MSC verification via reachability

The MSC is translated in a monitor automaton Sm.
The automaton is composed with the network.
Enables off-the-shelf verification techniques:

BMC: feasibility.
k-induction: unfeasibility.
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MSC verification via reachability

The MSC is translated in a monitor automaton Sm.

The automaton is composed with the network.
Enables off-the-shelf verification techniques:
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k-induction: unfeasibility.
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Scenario-based encoding

For all the automata:
Fix the position of the shared events.
transitions are simplified wrt shared event

Add2

Rem1

Add1

Rod2ControllerRod1

. . .
Add1

. . .
Rem1

. . .

. . .
Add1

. . .
Rem1

. . .
Add2

. . .

. . .
Add2

. . .

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 82 / 118



Scenario-based encoding

For all the automata:
Fix the position of the shared events.
transitions are simplified wrt shared event
Add the synchronization constraints.

Add2

Rem1

Add1

Rod2ControllerRod1

. . .
Add1

. . .
Rem1

. . .

. . .
Add1

. . .
Rem1

. . .
Add2

. . .

. . .
Add2

. . .
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Scenario-based encoding

For all the automata:
Fix the position of the shared events.
transitions are simplified wrt shared event
Add the synchronization constraints.
Encode the “local segments”.
transitions are simplified wrt τ Add2

Rem1

Add1

Rod2ControllerRod1

. . .. . .
τ τ Add1

. . .. . .
τ τ Rem1

. . .. . .
τ τ

. . .. . .
τ τ Add1

. . .. . .
τ τ Rem1

. . .. . .
τ τ Add2

. . .. . .
τ τ

. . .. . .
τ τ Add2

. . .. . .
τ τ
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Exploit the solver incrementalty

Initial encoding of shared events and synchronizations.
Different pieces are connected via equalities over state variables.
Local transition are added incrementally.

Pop equalities/Assert new local transitions/Push new equalities.

. . .
Add1

. . .
Rem1

. . .

. . .
Add1

. . .
Rem1

. . .
Add2

. . .

. . .
Add2

. . .
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Exploit the solver incrementalty

Initial encoding of shared events and synchronizations.
Different pieces are connected via equalities over state variables.
Local transition are added incrementally.
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. . .
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. . .
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Local transition are added incrementally.

Pop equalities/Assert new local transitions/Push new equalities.
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Experimental evaluation

Implementation:

approach implemented on top of the NUSMV model checker.

we use the SMT solver MATHSAT.

Settings:

linear hybrid automata benchmarks.

several handcrafted MSCs.

Comparision:

scenario-based encoding (with and without invariants), reduced
automaton, global automaton.

we scale the dimension of the benchmarks (number of automata,
length of the msc).
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Scenario vs. automata (running times)
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Run times repeating the scenario n times
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Partitioned K-induction - Algorithm

Inductive step: proved incrementally
following the partial order of the MSC.

Base case: bounded feasibility check.

Add2

Rem1

Add1

Rod2ControllerRod1

Unfeasible iff UNSAT

..
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Experimental Evaluation

Implementation:

Approach implemented on top of the NUSMV model checker.

We use the MATHSAT SMT solver.

Settings:

Linear hybrid automata benchmarks.

Several handcrafted (unsatisfiable) MSCs.

We scaled the dimension of the benchmarks (number of
automata, length of the MSCs).

Comparison:

MSC partitioned k-induction.

Monolithic k-induction on the system composed with the monitor
automata.
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Scenario-based vs. automata-based k-induction
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Explaining the unfeasibility

Typical use case:
We expect that a scenario is feasible.
The analysis proves that the scenario is unfeasible in the network.
How do we explain the unfeasibility?

We extract three types of explanations for the unfeasibility.
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Unfeasibility due to a component

Explained with a formula that:

Is required by the component when simulating its MSC events.

Is not consistent with the other components when they simulate
the events of the MSC.

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
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Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1
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Unfeasibility due to a component

Explained with a formula that:

Is required by the component when simulating its MSC events.

Is not consistent with the other components when they simulate
the events of the MSC.

It is the interpolant of A and B:

A is the encoding of the component and its MSC events.

B is the encoding of the other components and their MSC events.
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TRUE
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ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Rod 2
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ẋ ∈ [0.9, 1.1]
x ≤ 16

x = 0

Rod 1
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Unfeasibility due the network

Explained with a formula that:

Is required by the network when simulating the MSC.

Is not consistent with the additional constraints of the MSC.

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering

ẋ ∈ [0.9, 1.1]
x ≤ 16

Add1/x ′ := 0

Remove1/x ′ := 0

τ/x ≥ 16/x ′ := x

Rod1

Ready

ẋ ∈ [0.9, 1.1]
TRUE

x = 0

In

ẋ ∈ [0.9, 1.1]
x ≤ 5.9

Recovering
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Add1,Remove1 Add2,Remove2
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Rod1

Ready
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Unfeasibility due the network

Explained with a formula that:

Is required by the network when simulating the MSC.

Is not consistent with the additional constraints of the MSC.

It is the interpolant of A and B:

A is the encoding of the network and the MSC.

B are the CMSC constraints.

Ready

ẋ ∈ [0.9, 1.1]
TRUE
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Recovering
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Inconsistent subset of the CMSC

Subset of the original CMSC that is still unfeasible with the network.

D

A

A

B

C

A

B

σ1 σ2 σ3 σ4 σ5
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Inconsistent subset of the CMSC

Subset of the original CMSC that is still unfeasible with the network.
Extracted from the unsatisfiable core of the encoding.

D

A

A

B

C

A

B

σ1 σ2 σ3 σ4 σ5
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Verification of More complex Requirements

Beyond reachability - motivation to define more complex language.

Contract based design - need property-based language.

Even more important issue (different from verification).
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Requirements are flawed

The bugs are not in the system, but in the requirements!
The systems often implement correctly wrong/incomplete
requirements.
Software system errors caused by requirements errors

Not just a slogan, but a real user need.

Considered as major problem of software development process by
most European companies (EPRITI survey).

Confirmed by NASA studies on Voyager and the Galileo software
errors

Primary cause (62% on Voyager, 79% on Galileo):
mis-understanding the requirements.

Confirmed by the ESA and ERA recent calls on requirements.

Widely acknowledged from industry across domains (IAI, RCF,
Intecs, ...).
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Requirements validation

Requirements: descriptions of the functions provided by the
system and its operational constraints.

Requirements validation: checking if the requirements are correct,
complete, consistent, and compliant with what the stakeholders
have in mind.
Target requirements errors:

Incomplete (e.g., incomplete description of a function),
Missing (e.g., missing assumption on lower levels),
Incorrect (e.g., wrong value in condition used to trigger some
event),
Inconsistent (i.e., pair-wise incompatible),
Over-specified (e.g., more restrictive than necessary).

Cover 89% of faults examined in NASA projects.
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Formal checks and feedback
Property-based approach:

One requirement, one formula.
Easy traceability.
Validation based on series of satisfiability problems:

consistent, i.e. if they do not contain some contradiction
(sat of

∧
1≤i≤n ϕ

req
i )

not too strict, i.e. if they do allow some desired behavior
(sat of

∧
1≤i≤n ϕ

req
i ∧ ϕdes)

not too weak, i.e. if they rule out some undesired behavior
(sat of

∧
1≤i≤n ϕ

req
i ∧ ϕund )

Formal feedback:
Traces: witnesses of consistency, compatibility, property violation
Cores: subset of inconsistent, incompatible, property- entailing
formulas
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HRELTL: hybrid RELTL

For hardware specification, standardized languages based on
temporal logic + regular expressions (RELTL)
For hybrid systems, necessary to predicate over:

integer and real variables,
continuous quantities,
instantaneous changes,
continuous evolutions (constraints over derivatives).

Hybrid RELTL:
RELTL with the addition of:

continuous variables
arithmetic predicates with next and derivatives

Interpreted over hybrid traces.
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Reduction to discrete semantics

RELTL

HRELTL

(with SMT constraints)

The translation τ of a generic HRELTL formula is defined as:
τ(ϕ) := ψι ∧ ψDER ∧ ψPREDϕ

∧ ψVD ∧ τ ′(ϕ).

Theorem
ϕ and τ(ϕ) are equi-satisfiable.
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Predicates over continuous evolution

Example: a continuous oscillating signal.

-- v is a continuous variable
VAR v: continuous;
-- v does not jump
-- during discrete changes
CONSTRAINT
G ( STEP -> next(v)=v)
-- oscillating behavior
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- inconsistent scenario
CONSTRAINT
G (v!=0)

0 1 2 3 4
time

�1.0

�0.5

0.0

0.5

1.0

vo
lta

ge
 v

Predicates may observe the value of continuous variable during
continuous evolution.

Discretization not as easy as in the automata case (where we
have only invariants or urgent conditions).
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Additional variables and formulas
New variables:

δt tracks the elapsing of time;
ι tracks if the sampled interval is open or closed;
ζ is a parameter used to avoid the Zeno paradox;
v̇l and v̇r track the left and right derivative of v .

ψι models the represented sequence of intervals to be compliant
with assumptions;

E.g., two consecutive singular intervals if and only if δt = 0.

ψDER encodes the relation among continuous variables and their
derivatives in open intervals;
ψPREDϕ

constrain the set of predicates occurring in ϕ to model the
continuity of represented functions;

if p= holds in an open interval, then p= holds in adjacent points;
we cannot move from p< to p> without passing through a state
where p= holds.

ψVD
encodes that discrete variables do not change value during a

continuous evolution.
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Equi-satisfiable RELTL formula

The translation τ of a generic HRELTL formula is defined as:
τ(ϕ) := ψι ∧ ψDER ∧ ψPREDϕ

∧ ψVD ∧ τ ′(ϕ).

Theorem
ϕ and τ(ϕ) are equi-satisfiable.

Possible non-linear constraints:
from input predicates over discrete variables;
from constraints on derivatives.

if ϕ does not contain SEREs, then the translation is linear in the
size of ϕ.

A. Cimatti (FBK-irst) SMT-Based Verification of Hybrid Systems ATVA’13, October 2013 103 / 118



Mappings

From hybrid to discrete:
ti = t if if Ii = [t , t], and ti = (t + t ′)/2 if Ii = (t , t ′);
si(v) = f v

i (ti );
if Ii = (t , t ′), si(v̇l) and si(v̇r ) are the mean value over (ti − ti−1) and
(ti+1, ti); if Ii = [t , t] then si(v̇l) = ḟ v

i (t)−, si(v̇r ) = ḟ v
i (t)+;

si(ι) = ⊤ if Ii = [t , t], and si(ι) = ⊥ if Ii = (t , t ′);
si(δt ) = ti+1 − ti ;
si(ζ) = α as in the Cauchy’s condition.

From discrete to hybrid:
ti =

∑

0≤j<i−1 sj(δt),
if si(ι) = ⊤ then Ii = [ti , ti ] else Ii = (ti−1, ti+1),
fi is the piecewise linear function defined as
f v
i (t) = si(v)− si(v̇l)× (ti − t) if t ≤ ti and as
f v
i (t) = si(v) + si(v̇r )× (t − ti) if t > ti .
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Satisfiability procedure

The approach:

convert hybrid formula into discrete ϕ

build a fair transition system Sϕ

check whether the language accepted by Sϕ is not empty.

Underlying reasoning engine:
Bounded Model Checking

maximum bound not guaranteed
only lasso-shape traces

Model Checking with Predicate Abstraction and automatic
refinement

set of predicates not guaranteed to exist
abstraction refinement not always guaranteed to find the right set of
predicates.
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Satisfiability procedure - example
VAR v: continuous;
CONSTRAINT
G ( STEP -> next(v)=v)
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- consistent scenario
CONSTRAINT
! G (v!=0)

⇒

11 boolean variables
2 real variables
4 fairness conditions
−− Flattened FSM model generated from stdin
−− Dumped layers are: model ___HE_RELTL_LAYER_PROBLEM__ 

MODULE main
−− Input variables from layer ’model’
−− Input variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
IVAR
delta_time : real;

−− State variables from layer ’model’
−− State variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
VAR
"next(v) = v" : boolean;
time_point : boolean;
v : real;
LTL_INPUT_0 : boolean;
LTL_INPUT_1 : boolean;
LTL_0_SPECF_12 : boolean;
LTL_0_SPECF_11 : boolean;
LTL_0_SPECF_9 : boolean;
LTL_0_SPECF_7 : boolean;
LTL_0_SPECF_5 : boolean;
LTL_0_SPECF_3 : boolean;
LTL_0_SPECF_1 : boolean;

−− Frozen variables from layer ’model’
−− Frozen variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
−− Defines from layer ’model’
−− Defines from layer ’___HE_RELTL_LAYER_PROBLEM__’
DEFINE
"delta_time>0" := delta_time > 0;
"delta_time=0" := delta_time = 0;
"v > 0" := !"v <= 0";
"v <= 0" := ("v < 0" | "v = 0");
"v >= 0" := !"v < 0";
"v != 0" := !"v = 0";
"v < 0" := v < 0;
"v = 0" := v = 0;
LTL_0_SPECF_10 := (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPE
CF_11);
LTL_0_SPECF_6 := (!LTL_0_SPECF_8 | LTL_0_SPECF_7);
LTL_0_SPECF_8 := (v < 0 | LTL_0_SPECF_9);
LTL_0_SPECF_2 := (!LTL_0_SPECF_4 | LTL_0_SPECF_3);
LTL_0_SPECF_4 := (!(v < 0 | v = 0) | LTL_0_SPECF_5);
LTL_0_SPECF_0 := (v = 0 | LTL_0_SPECF_1);

−− Assignments from layer ’model’

−− Assignments from layer ’___HE_RELTL_LAYER_PROBLEM__’

INIT
 time_point

INIT
 !(!(v = 0 | LTL_0_SPECF_1) | (((!LTL_0_SPECF_4 | LTL_0_SPECF_3) | (!LTL_0_SPECF
_8 | LTL_0_SPECF_7)) | (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_
0_SPECF_11)))

TRANS
 ((time_point & (delta_time = 0 & next(time_point))) | ((time_point & (delta_tim
e > 0 & next(!time_point))) | (!time_point & (delta_time > 0 & next(time_point))
)))

TRANS
 (delta_time > 0 −> ((v < 0 −> next(("v < 0" | "v = 0"))) & (!"v <= 0" −> next(!
"v < 0"))))

TRANS
 ((time_point & delta_time > 0) −> (next(v = 0) −> v = 0))

TRANS
 ((!time_point & delta_time > 0) −> (v = 0 −> next(v = 0)))

TRANS
 ("next(v) = v" <−> next(v) = v)

TRANS
 (LTL_INPUT_1 <−> (delta_time = 0 & "next(v) = v"))

TRANS
 next((!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPECF_11)) = LT
L_0_SPECF_11

TRANS
 (LTL_INPUT_0 <−> delta_time = 0)

TRANS
 TRUE = LTL_0_SPECF_12

TRANS
 next((v < 0 | LTL_0_SPECF_9)) = LTL_0_SPECF_9

TRANS
 next((!LTL_0_SPECF_8 | LTL_0_SPECF_7)) = LTL_0_SPECF_7

TRANS
 next((!(v < 0 | v = 0) | LTL_0_SPECF_5)) = LTL_0_SPECF_5

TRANS
 next((!LTL_0_SPECF_4 | LTL_0_SPECF_3)) = LTL_0_SPECF_3

TRANS
 next((v = 0 | LTL_0_SPECF_1)) = LTL_0_SPECF_1

FAIRNESS
 delta_time > 0

FAIRNESS
 (!(v = 0 | LTL_0_SPECF_1) | v = 0)

FAIRNESS
 (!(!(v < 0 | v = 0) | LTL_0_SPECF_5) | !(v < 0 | v = 0))

FAIRNESS
 (!(v < 0 | LTL_0_SPECF_9) | v < 0)

BMC (with fairness)
k = 4
< 1 second

⇒ SAT
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VAR v: continuous;
CONSTRAINT
G ( STEP -> next(v)=v)
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- inconsistent scenario
CONSTRAINT
G (v!=0)

⇒

11 boolean variables
2 real variables
3 fairness conditions
−− Flattened FSM model generated from stdin
−− Dumped layers are: model ___HE_RELTL_LAYER_PROBLEM__ 

MODULE main
−− Input variables from layer ’model’
−− Input variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
IVAR
delta_time : real;

−− State variables from layer ’model’
−− State variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
VAR
"next(v) = v" : boolean;
time_point : boolean;
v : real;
LTL_INPUT_0 : boolean;
LTL_INPUT_1 : boolean;
LTL_0_SPECF_12 : boolean;
LTL_0_SPECF_11 : boolean;
LTL_0_SPECF_9 : boolean;
LTL_0_SPECF_7 : boolean;
LTL_0_SPECF_5 : boolean;
LTL_0_SPECF_3 : boolean;
LTL_0_SPECF_1 : boolean;

−− Frozen variables from layer ’model’
−− Frozen variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
−− Defines from layer ’model’
−− Defines from layer ’___HE_RELTL_LAYER_PROBLEM__’
DEFINE
"delta_time>0" := delta_time > 0;
"delta_time=0" := delta_time = 0;
"v > 0" := !"v <= 0";
"v <= 0" := ("v < 0" | "v = 0");
"v >= 0" := !"v < 0";
"v != 0" := !"v = 0";
"v < 0" := v < 0;
"v = 0" := v = 0;
LTL_0_SPECF_10 := (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPE
CF_11);
LTL_0_SPECF_6 := (!LTL_0_SPECF_8 | LTL_0_SPECF_7);
LTL_0_SPECF_8 := (v < 0 | LTL_0_SPECF_9);
LTL_0_SPECF_2 := (!LTL_0_SPECF_4 | LTL_0_SPECF_3);
LTL_0_SPECF_4 := (!(v < 0 | v = 0) | LTL_0_SPECF_5);
LTL_0_SPECF_0 := (v = 0 | LTL_0_SPECF_1);

−− Assignments from layer ’model’

−− Assignments from layer ’___HE_RELTL_LAYER_PROBLEM__’

INIT
 time_point

INIT
 !((v = 0 | LTL_0_SPECF_1) | (((!LTL_0_SPECF_4 | LTL_0_SPECF_3) | (!LTL_0_SPECF_
8 | LTL_0_SPECF_7)) | (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0
_SPECF_11)))

TRANS
 ((time_point & (delta_time = 0 & next(time_point))) | ((time_point & (delta_tim
e > 0 & next(!time_point))) | (!time_point & (delta_time > 0 & next(time_point))
)))

TRANS
 (delta_time > 0 −> ((v < 0 −> next(("v < 0" | "v = 0"))) & (!"v <= 0" −> next(!
"v < 0"))))

TRANS
 ((time_point & delta_time > 0) −> (next(v = 0) −> v = 0))

TRANS
 ((!time_point & delta_time > 0) −> (v = 0 −> next(v = 0)))

TRANS
 ("next(v) = v" <−> next(v) = v)

TRANS
 (LTL_INPUT_1 <−> (delta_time = 0 & "next(v) = v"))

TRANS
 next((!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPECF_11)) = LT
L_0_SPECF_11

TRANS
 (LTL_INPUT_0 <−> delta_time = 0)

TRANS
 TRUE = LTL_0_SPECF_12

TRANS
 next((v < 0 | LTL_0_SPECF_9)) = LTL_0_SPECF_9

TRANS
 next((!LTL_0_SPECF_8 | LTL_0_SPECF_7)) = LTL_0_SPECF_7

TRANS
 next((!(v < 0 | v = 0) | LTL_0_SPECF_5)) = LTL_0_SPECF_5

TRANS
 next((!LTL_0_SPECF_4 | LTL_0_SPECF_3)) = LTL_0_SPECF_3

TRANS
 next((v = 0 | LTL_0_SPECF_1)) = LTL_0_SPECF_1

FAIRNESS
 delta_time > 0

FAIRNESS
 (!(!(v < 0 | v = 0) | LTL_0_SPECF_5) | !(v < 0 | v = 0))

FAIRNESS
 (!(v < 0 | LTL_0_SPECF_9) | v < 0)

INVARSPEC
FALSE

PRED
v<0
PRED
v>0
PRED
v=0
PRED
LTL_0_SPECF_1
PRED
LTL_0_SPECF_3
PRED
LTL_0_SPECF_5
PRED
LTL_0_SPECF_7
PRED
LTL_0_SPECF_9
PRED
LTL_0_SPECF_11
PRED
LTL_0_SPECF_12
PRED
"next(v) = v"
PRED
time_point
PRED
LTL_INPUT_0

PRED
LTL_INPUT_1

K-induction + predicate abs.
k = 6, 14 predicates
< 1 second

⇒ UNSAT
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OTHELLO specification language

OTHELLO = Object Temporal Hybrid expressions Linear-time
temporal Logic

Example:

The train trip shall issue an emergency brake
command, which shall not be revoked until the train has
reached standstill and the driver has acknowledged the
trip (ETCS SRS Sec. 3.13.8.2)

for all t of type Train (t .trip implies
(t .emergency brake until ( t .speed = 0 and t .driver .ack) ) )

Result of industrial project EuRailCheck.

Base of MSR award winner project OthelloPlay.
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Conclusions

the role of hybrid automata to model complex embedded systems
cover all the phase of the lifecycle

design (off-line)
operation (on-line)

focus on large discrete state space

SMT supports a comprehensive modeling framework

provides for powerful analysis capabilities
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Future Challenges

dealing with nonlinear dynamics in SMT setting
integrating local time with nonlinear dynamics
integrating more complex dynamics within SMT-based backends

specialized techniques for analog/mixed signals
composition of discrete controller and physical plant
fixed-rate sampling of physical plant
discrete controller as software

analysis of parameterized systems, and synthesis of interesting
parameter spaces

modeling in activity-based/transaction-based
view [CMR12a,CMRb]
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