
Software Model Checking for Cooperative
Threaded Programs

Alessandro Cimatti
j.w.w. Iman Narasamdya and Marco Roveri

Fondazione Bruno Kessler - Embedded System Unit, Italy

ATVA’13
October 2013

Hanoi, Vietnam

Motivations

◮ Multi-threaded software with cooperative scheduling (or
cooperative threads) is adopted in many embedded
system domains

◮ SystemC, SPECC, FairThreads, OSEK/VDX, PLC, . . .

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 2

Motivations

◮ Multi-threaded software with cooperative scheduling (or
cooperative threads) is adopted in many embedded
system domains

◮ SystemC, SPECC, FairThreads, OSEK/VDX, PLC, . . .

◮ Formal verification of cooperative threads is challenging:
◮ Scheduling policy is complex, yet correctness depends on

the details
◮ Threads have inifinite state space

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 2

Motivations

◮ Multi-threaded software with cooperative scheduling (or
cooperative threads) is adopted in many embedded
system domains

◮ SystemC, SPECC, FairThreads, OSEK/VDX, PLC, . . .

◮ Formal verification of cooperative threads is challenging:
◮ Scheduling policy is complex, yet correctness depends on

the details
◮ Threads have inifinite state space

◮ Existing formal verification approaches are limited:
◮ Disregard significant semantics aspects
◮ Perform under-approximations
◮ Poor scalability

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 2

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 3

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Cooperative Threaded Programs

◮ Threaded program: a set of sequential programs with
shared variables

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 4

Cooperative Threaded Programs

◮ Threaded program: a set of sequential programs with
shared variables

◮ Primitive functions (domain specific API):

wait (EVENT E) , wait (100) , no t i f y (EVENT J) ,

Thread Thread Scheduler

Primitive
Functions

.......

Threaded Program

pass control

query result get state

set statescheduler state
update/query

T1 TN

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 4

Cooperative Threaded Programs

◮ Threaded program: a set of sequential programs with
shared variables

◮ Primitive functions (domain specific API):

wait (EVENT E) , wait (100) , no t i f y (EVENT J) ,

Thread Thread Scheduler

Primitive
Functions

.......

Threaded Program

pass control

query result get state

set statescheduler state
update/query

T1 TN

◮ Scheduler and primitive functions are left abstract, but
exhibit cooperative scheduling with exclusive threads
execution

◮ Scheduler never preempts the running thread
◮ At most one running thread at a time

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 4

Dynamic View of Cooperative Threads

Scheduler Thread i Thread j

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Scheduler Thread i Thread j

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Scheduler Thread i Thread j

Run Thread i

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Scheduler Thread i Thread j

Run Thread i

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Scheduler never
preempts control

notify(event)
Thread can

Scheduler Thread i Thread j

Run Thread i

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Scheduler Thread i Thread j

Run Thread i

Thread exit / wait(...)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Dynamic View of Cooperative Threads

Pick runnable
Thread i

Thread j

Scheduler Thread i Thread j

Pick runnable

Run Thread i

Run Thread j

Thread exit / wait(...)

Thread exit / wait(...)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 5

Sequential Program as CFG

Sequential program represented as a control-flow graph (CFG)

◮ A CFG for a sequential program
P is a pair (L,G)

◮ L: a set of program locations
◮ G ⊆ L × Op × L: set of edges
◮ l0: unique entry location
◮ le: error location
◮ Op the set of operations

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 6

Sequential Program as CFG

Sequential program represented as a control-flow graph (CFG)

◮ A CFG for a sequential program
P is a pair (L,G)

◮ L: a set of program locations
◮ G ⊆ L × Op × L: set of edges
◮ l0: unique entry location
◮ le: error location
◮ Op the set of operations

x = read();
y = read();
while (x != 0) {

x--;
y--;

}
assert(x == y);

l0

l1

l2

l3

l4

l5

l6

le l7

x = read()

y = read()

[x != 0][!(x != 0)]

x--

y--

[x == y][!(x == y)]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 6

Threads as CFGs

Each thread is represented as a control-flow-graph

◮ A CFG for thread T is a pair (L,G)
◮ L: a set of program locations
◮ G ⊆ L × Op × L: set of edges
◮ l0: unique entry location
◮ le: error location
◮ Op set of operations, contains

calls to primitive functions

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 7

Threads as CFGs

Each thread is represented as a control-flow-graph

◮ A CFG for thread T is a pair (L,G)
◮ L: a set of program locations
◮ G ⊆ L × Op × L: set of edges
◮ l0: unique entry location
◮ le: error location
◮ Op set of operations, contains

calls to primitive functions

while (i <= g) {
i f (i < g) i ++;
else { / / n e and w e are

/ / p r i m i t i v e f u n c t i o n s
n e (E1) ;
w e (E2) ; }

asser t (i < g) ;
}

l0

l1

l2 l3

l4 l5

l6

l9

l10 l11

le l7l8

![i <= g] [i <= g]

![i < g] [i < g]

n e(E1)

w e(E2)

i++

[i < g]![i < g]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 7

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Safe Sequential Program
A sequential program is safe iff the error location is unreachable

x = read();
y = read();
while (x != 0) {

x--;
y--;

}
assert(x == y);

l0

l1

l2

l3

l4

l5

l6

le l7

x = read()

y = read()

[x != 0][!(x != 0)]

x--

y--

[x == y][!(x == y)]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 8

Safe Sequential Program
A sequential program is safe iff the error location is unreachable

Safe: x = 2, y = 2

x = read();
y = read();
while (x != 0) {

x--;
y--;

}
assert(x == y);

l0

l1

l2

l3

l4

l5

l6

le l7

x = read()

y = read()

[x != 0][!(x != 0)]

x--

y--

[x == y][!(x == y)]

l0

l1

l2

l3

l4

l5

l2

l3

l4

l5

l2

l6

l7

x = 2

y = 2

[x != 0]

[!(x != 0)]

x--

y--

[x != 0]

x--

y--

[x == y]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 8

Safe Sequential Program
A sequential program is safe iff the error location is unreachable

Safe: x = 2, y = 2 Unsafe: x = 2, y = 1

x = read();
y = read();
while (x != 0) {

x--;
y--;

}
assert(x == y);

l0

l1

l2

l3

l4

l5

l6

le l7

x = read()

y = read()

[x != 0][!(x != 0)]

x--

y--

[x == y][!(x == y)]

l0

l1

l2

l3

l4

l5

l2

l3

l4

l5

l2

l6

l7

x = 2

y = 2

[x != 0]

[!(x != 0)]

x--

y--

[x != 0]

x--

y--

[x == y]

l0

l1

l2

l3

l4

l5

l2

l3

l4

l5

l2

l6

le

x = 2

y = 1

[x != 0]

[!(x != 0)]

x--

y--

[x != 0]

x--

y--

[!(x == y)]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 8

Model Checking of Sequential Programs

◮ Finite Model for Sequential Programs
◮ Explicit State Model Checking [Hol05]

◮ Symbolic Model Checking
◮ Symbolic Bounded Model Checking of Software [CKL04]
◮ Lazy Predicate Abstraction of Software [HJMS02]
◮ Lazy Abstraction with Interpolants for Software [McM06]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 9

Finite Model for Sequential Programs

Create a finite-model of the program:
◮ Decide inputs to be chosen over a finite range
◮ Fix bounds for memory and recursive calls

Perform verification with an explicit state model checker:
◮ The SPIN model checker [Hol05]
◮ The VERISOFT model checker [God05]
◮ . . .

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 10

Finite Model for Sequential Programs

Create a finite-model of the program:
◮ Decide inputs to be chosen over a finite range
◮ Fix bounds for memory and recursive calls

Perform verification with an explicit state model checker:
◮ The SPIN model checker [Hol05]
◮ The VERISOFT model checker [God05]
◮ . . .

Comments:
◮ It is an under-approximation

◮ The ranges for the inputs may hide bugs

◮ State explosion problem

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 10

Bounded Checking of Software
SAT Based Bounded Model Checking [BCC+03] effective in
finding bugs in hardware designs

◮ Build a first order formula that represents a
counter-example of length k for the property ϕ to verify

I(X0) ∧
k−1∧

0

R(Xi ,Xi+1) ∧ ¬ϕ(Xk)

◮ If the formula is satisfiable, then a bug has been found
◮ Exploits effectiveness of SAT and SMT solvers

◮ Otherwise there might be a longer counterexample

ϕ(Xk)

R(Xk−1, Xk)R(X0, X1)

I(X0)

Extends to software “trivially”

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 11

Bounded Model Checking For Software

◮ Fix a bound to loop unwinding
◮ Rewrite the program into single static assignment (SSA)
◮ Build a first order formula that represents the execution of

the resulting program
◮ The property to verify is the reachability of the error location

◮ Check satisfiability of the formula
◮ If satisfiable, then a bug has been found
◮ Otherwise there might be a bug for a longer unwinding of

the loops

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 12

Example

x = read () ; y = read () ;
while (x != 0) {

x−−; y−−;
}
asser t (x == y) ;

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 13

Example

x = read () ; y = read () ;
while (x != 0) {

x−−; y−−;
}
asser t (x == y) ;

x = read () ; y = read () ;
i f (x != 0) { / / loop 1

x−−; y−−;
i f (x != 0) { / / loop 2

x−−; y−−;
}

}
asser t (x == y) ;

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 13

Example

x = read () ; y = read () ;
while (x != 0) {

x−−; y−−;
}
asser t (x == y) ;

x = read () ; y = read () ;
i f (x != 0) { / / loop 1

x−−; y−−;
i f (x != 0) { / / loop 2

x−−; y−−;
}

}
asser t (x == y) ;

x0 = read () ; y0 = read () ;
i f (x0 != 0) { / / loop 1

x1 = x0−1; y1 = y0−1;
i f (x1 != 0) { / / loop 2

x2 = x1−1; y2 = y1−1;
}
x3 = (x1 != 0) ? x2 : x1 ;
y3 = (x1 != 0) ? y2 : y1 ;

}
x4 = (x0 != 0) ? x3 : x0 ;
y4 = (x0 != 0) ? y3 : y0 ;
asser t (x4 == y4) ;

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 13

Example

x = read () ; y = read () ;
while (x != 0) {

x−−; y−−;
}
asser t (x == y) ;

x = read () ; y = read () ;
i f (x != 0) { / / loop 1

x−−; y−−;
i f (x != 0) { / / loop 2

x−−; y−−;
}

}
asser t (x == y) ;

x0 = read () ; y0 = read () ;
i f (x0 != 0) { / / loop 1

x1 = x0−1; y1 = y0−1;
i f (x1 != 0) { / / loop 2

x2 = x1−1; y2 = y1−1;
}
x3 = (x1 != 0) ? x2 : x1 ;
y3 = (x1 != 0) ? y2 : y1 ;

}
x4 = (x0 != 0) ? x3 : x0 ;
y4 = (x0 != 0) ? y3 : y0 ;
asser t (x4 == y4) ;

x0 = readX ∧ y0 = readY ∧
x0 6= 0 → (

x1 = x0 − 1 ∧ y1 = y0 − 1 ∧
x1 6= 0 → (

x2 = x1 − 1 ∧ y2 = y1 − 1
) ∧
x1 6= 0 → (x3 = x2 ∧ y3 = y2) ∧
x1 = 0 → (x3 = x1 ∧ y3 = y1)

) ∧
x0 6= 0 → (x4 = x3 ∧ y4 = y3) ∧
x0 = 0 → (x4 = x0 ∧ y4 = y0) ∧
x4 = y4

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 13

Bounded Model Checking For Software

There are many tools:
◮ CBMC [CKL04]
◮ LLBMC [FMS13]
◮ ESBMC [CFMS12]
◮ . . .

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 14

Bounded Model Checking For Software

There are many tools:
◮ CBMC [CKL04]
◮ LLBMC [FMS13]
◮ ESBMC [CFMS12]
◮ . . .

Comments

◮ This is an under-approximation: bound on loops
◮ Checks whether loop-unwinding is enough can make the

approach complete

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 14

Bounded Model Checking For Software

There are many tools:
◮ CBMC [CKL04]
◮ LLBMC [FMS13]
◮ ESBMC [CFMS12]
◮ . . .

Comments

◮ This is an under-approximation: bound on loops
◮ Checks whether loop-unwinding is enough can make the

approach complete
◮ State explosion

◮ For some programs, the required unwinding is too large to
be handled by state-of-the-art SAT/SMT solvers

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 14

Predicate Abstraction

◮ A concrete program P over
states S

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 15

Predicate Abstraction

◮ A concrete program P over
states S

◮ Predicates ψi induce partition
over S

ψ1

ψ2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 15

Predicate Abstraction

◮ A concrete program P over
states S

◮ Predicates ψi induce partition
over S

◮ Each partition is a state of the
abstract program

ψ1

ψ2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 15

Predicate Abstraction

◮ A concrete program P over
states S

◮ Predicates ψi induce partition
over S

◮ Each partition is a state of the
abstract program

◮ Transition in abstract space:
◮ from as0 to as1 iff there is a

transition from cs0 to cs1

with cs0 ∈ as0 and
cs1 ∈ as1

ψ1

ψ2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 15

Predicate Abstraction

◮ A concrete program P over
states S

◮ Predicates ψi induce partition
over S

◮ Each partition is a state of the
abstract program

◮ Transition in abstract space:
◮ from as0 to as1 iff there is a

transition from cs0 to cs1

with cs0 ∈ as0 and
cs1 ∈ as1

ψ1

ψ2

RA(Ψ,Ψ
′
) = ∃X ,X ′.(RC(X ,X

′) ∧
∧

i

(ψi ↔ ψ(X) ∧ ψi
′
↔ ψ(X ′)))

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 15

Counter-Example Guided Abstraction Refinement

The Counter-Example Guided Abstraction Refinement (CEGAR) Loop

CCex
Counterexample

Analysis

Model

Checking

Standard

Refinement

No ACex

No CCex

Ψi+1

Ψ0

IC(X), RC(X,X ′), ϕC(X)

ACex

IA(Ψi), RA(Ψi,Ψ′
i), ϕA(Ψi)

Program does not satisfy ϕC Program satisfy ϕC

Predicate

Abstraction

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 16

Lazy Predicate Abstraction of Software

On-the-fly construction of an abstract reachability tree ART with
counterexample-guided abstraction refinement

◮ A node of an ART is a pair (q, ϕ)
◮ q is a location of the CFG
◮ ϕ is the reachable region representing a set of states

◮ Node expansion from q
op
−→ q′:

◮ (q, ϕ) → (q′, ϕ′)
◮ ϕ′ = SPπ

op(ϕ)
◮ the strongest post-condition for operation op w.r.t. set of

predicates π

◮ Node (q, ϕ) is covered by internal node (q, ϕ′) iff ϕ⇒ ϕ′

◮ ART is safe iff
◮ error location le is not reachable
◮ all the leaves are covered

◮ If the ART is safe then, the program is safe

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 17

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

l0, ϕ0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
l0, ϕ0

l1, ϕ1

ϕ1 = SPπ

op(ϕ0)op

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

ϕ
′

2 |= ϕ2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

le, ϕe

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

le, ϕe

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

le, ϕe

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

le, ϕe

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART

l0, ϕ0

l1, ϕ1

l2, ϕ2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

l5, ϕ5

l6, ϕ6

le, ϕ
′

e

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

l5, ϕ5

l6, ϕ6

le, ϕ
′

e

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

l5, ϕ5

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

l5, ϕ5

l6, ϕ6

l1, ϕ
′

1

covered

l7, ϕ7

l5, ϕ
′

5

covered

l1, ϕ
′′

1

covered

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Lazy Predicate Abstraction of Software

On-the-fly construction of an ART with CEGAR
1. Pick an ART node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ART
◮ Goto 1 to reconstruct

subtree

4. ART is safe ⇒ program is safe

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l2, ϕ
′

2

covered

l4, ϕ4

l2, ϕ
′′

2

covered

l5, ϕ5

l6, ϕ6

l1, ϕ
′

1

covered

l7, ϕ7

l5, ϕ
′

5

covered

l1, ϕ
′′

1

covered

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 18

Key factors for Lazy Predicate Abstraction

◮ Computation of SPπ
op(ϕ) expensive

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 19

Key factors for Lazy Predicate Abstraction

◮ Computation of SPπ
op(ϕ) expensive

◮ Advanced techniques for computation of SPπ

op(ϕ)
◮ AllSMT [LNO06]
◮ Structural Abstraction [CDJR09]
◮ Hybrid Abstraction (BDD + SMT) [CCF+07, CFG+10]
◮ QE techniques: Fourier-Motzkin [Sch98],

Loos-Weispfenning [LW93, Mon08]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 19

Key factors for Lazy Predicate Abstraction

◮ Computation of SPπ
op(ϕ) expensive

◮ Advanced techniques for computation of SPπ

op(ϕ)
◮ AllSMT [LNO06]
◮ Structural Abstraction [CDJR09]
◮ Hybrid Abstraction (BDD + SMT) [CCF+07, CFG+10]
◮ QE techniques: Fourier-Motzkin [Sch98],

Loos-Weispfenning [LW93, Mon08]
◮ Limit number of SPπ

op(ϕ) computations
◮ Large Block Encoding [BCG+09]
◮ Adjustable Block Encoding [BKW10]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 19

Key factors for Lazy Predicate Abstraction

◮ Computation of SPπ
op(ϕ) expensive

◮ Advanced techniques for computation of SPπ

op(ϕ)
◮ AllSMT [LNO06]
◮ Structural Abstraction [CDJR09]
◮ Hybrid Abstraction (BDD + SMT) [CCF+07, CFG+10]
◮ QE techniques: Fourier-Motzkin [Sch98],

Loos-Weispfenning [LW93, Mon08]
◮ Limit number of SPπ

op(ϕ) computations
◮ Large Block Encoding [BCG+09]
◮ Adjustable Block Encoding [BKW10]

◮ Discovery of new predicates [BHJM07]:
◮ Weakest Precondition
◮ Unsatisfiable Core
◮ Interpolants

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 19

Lazy Abstraction with Interpolants
Interpolants:

◮ Given Φ1 and Φ2 such that Φ1 ∧ Φ2 is unsatisfiable
◮ There exists an interpolant Ψ such that:

◮ Φ1 ⇒ Ψ
◮ Ψ ∧ Φ2 is unsatisfiable
◮ Ψ ∈ L(Φ1) ∩ L(Φ2)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 20

Lazy Abstraction with Interpolants
Interpolants:

◮ Given Φ1 and Φ2 such that Φ1 ∧ Φ2 is unsatisfiable
◮ There exists an interpolant Ψ such that:

◮ Φ1 ⇒ Ψ
◮ Ψ ∧ Φ2 is unsatisfiable
◮ Ψ ∈ L(Φ1) ∩ L(Φ2)

Lazy abstraction with interpolation:

◮ Similar in spirit to lazy-predicate abstraction
◮ Avoids computation of SPπ

op(ϕ) by over-approximating
reachability regions using interpolants

◮ Reachability region of error location set to ⊥
◮ Refine reachability regions on the path using interpolants

l0 l1 lk le

ϕ0 ϕk ⊥

Φ1 Φ2

Φ1

Φ1

Φ2

Φ2

ϕ1

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 20

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Approaches to Model Checking of CTPs

Thread T3

Thread T2

Thread T1

Cooperative Threads

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 21

Approaches to Model Checking of CTPs

T1 T2 T3

Scheduler

Finite−State Model

Thread T3

Thread T2

Thread T1

Cooperative Threads

Explicit−State Analysis
e.g., Promela + SPIN

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 21

Approaches to Model Checking of CTPs

T1 T2 T3

Scheduler

Finite−State Model

Thread T3

Thread T2

Thread T1

Cooperative Threads

Symbolic Sequential Analysis
e.g., Eager/Lazy Abstraction, BMC

Explicit−State Analysis
e.g., Promela + SPIN

T1 T2 T3

Scheduler

Sequential C program

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 21

Approaches to Model Checking of CTPs

T1 T2 T3

Scheduler

Finite−State Model

T1 T2 T3

Scheduler

Sequential C program

T1 T2 T3

Threaded C program

Thread T3

Thread T2

Thread T1

Cooperative Threads

Symbolic Sequential Analysis
e.g., Eager/Lazy Abstraction, BMC

Scheduler

ESST for CTP Target

Explicit−State Analysis
e.g., Promela + SPIN

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 21

Finite-Model for Cooperative Threaded Programs

Translate cooperative threads into a Finite-State Model

◮ e.g. Promela [Hol05]

Promela
SPIN

Explicit State Analysis
Scheduler

T1 T2 T3

Finite−State Model

Thread T3

Thread T1

Thread T2

Cooperative Threads

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 22

Finite-Model for Cooperative Threaded Programs

Translate cooperative threads into a Finite-State Model

◮ e.g. Promela [Hol05]

Promela
SPIN

Explicit State Analysis
Scheduler

T1 T2 T3

Finite−State Model

Thread T3

Thread T1

Thread T2

Cooperative Threads

Analysis can be done with Explicit State Model Checker
◮ e.g, SPIN Model Checker [Hol05]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 22

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

◮ Encode thread communication primitives opening their
definition

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a process

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a process
◮ Encode thread body as functions

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a process
◮ Encode thread body as functions

◮ Thread suspension as function thread suspend()
◮ Implementation varies from the encodings

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
thread suspend () ;

NEXT LOC LABEL :
l o c a l = g loba l ;

i n l i n e thread body () {
i f

: : (th read pc == NEXT LOC) −>
goto NEXT LOC LABEL ;

: : . . .
: : else −> skip ;

f i
/∗∗ Thread body ∗∗ /

}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Finite-Model for Cooperative Threaded Programs

◮ Input reading encoded as a function that selects
non-deterministically a value from a finite-set of values

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a process
◮ Encode thread body as functions

◮ Thread suspension as function thread suspend()
◮ Implementation varies from the encodings

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
thread suspend () ;

NEXT LOC LABEL :
l o c a l = g loba l ;

i n l i n e thread body () {
i f

: : (th read pc == NEXT LOC) −>
goto NEXT LOC LABEL ;

: : . . .
: : else −> skip ;

f i
/∗∗ Thread body ∗∗ /

}

[CCNR11, CNR13] shows finite-model for SystemC designs

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 23

Encoding of primitive functions
Channel update

de f ine ITE (C, T ,E) { i f : : C −> T ; : : else −> E; f i }

i n l i n e p to c upda te () {
ITE (p to c new != p t o c o l d ,

p t o c o l d = p to c new ; e p t o c = NOTIFIED DELTA , skip)
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 24

Encoding of primitive functions
Channel update

de f ine ITE (C, T ,E) { i f : : C −> T ; : : else −> E; f i }

i n l i n e p to c upda te () {
ITE (p to c new != p t o c o l d ,

p t o c o l d = p to c new ; e p t o c = NOTIFIED DELTA , skip)
}

Event Notification
bool p w r i t e n o t i f i e d , p r e a d n o t i f i e d , c r e a d a n d a c k n o t i f i e d ;

i n l i n e i s p w r i t e n o t i f i e d (n o t i f i e d) {
ITE (((p w r i t e p c == wa i t 1 && e p w r i t e s t a t e == NOTIFIED) | |

(p w r i t e p c == wa i t 2 && e s ta te == NOTIFIED)) ,
n o t i f i e d = true , n o t i f i e d = fa lse) ;

}

i n l i n e n o t i f y t h r e a d s () {
i s p w r i t e n o t i f i e d (p w r i t e n o t i f i e d) ;
ITE (p w r i t e n o t i f i e d , p w r i t e s t a t e = RUNNABLE, skip) ;
i s p r e a d n o t i f i e d (p r e a d n o t i f i e d) ;
ITE (p r e a d n o t i f i e d , p read s ta te = RUNNABLE, skip) ;
i s c r e a d a n d a c k n o t i f i e d (c r e a d a n d a c k n o t i f i e d) ;
ITE (c read and ack no t i f i ed , c read and ack s ta te = RUNNABLE, skip) ;

}

i n l i n e e n o t i f y () {
e s ta te = NOTIFIED ; n o t i f y t h r e a d s () ; e s ta te = NONE;

}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 24

Encoding of the scheduler

For SystemC

select
thread

threads
runnable

notification
delta

channel
updates

time
acceleration

threads
no runnable

notification
timed

channel
updates

notification
delta

run
thread

no fail

no runnable threads

start initialization
phase

phase
evaluation

fail
end

update
phase

proctype Scheduler () {
bool runnable , acce lera ted ;
channel updates () ;
d e l t a n o t i f i c a t i o n () ;

s t a r t D e l t a C y c l e :
ex i s t s runnab le th reads (runnable) ;
ITE (! runnable , goto T imedNot i f i ca t i on , skip) ;
eva luat ion phase () ;
channel updates () ;

p rogress Del taCyc le :
d e l t a n o t i f i c a t i o n () ;
ITE (runnable , goto s ta r t De l t aCyc le , skip) ;

T imedNo t i f i ca t i on :
t i m e a c c e l e r a t i o n (acce lera ted) ;
ITE (accelerated , goto SchedulerExi t , skip) ;
t i m e d n o t i f i c a t i o n () ;
goto s t a r t D e l t a C y c l e ;

Schedu lerEx i t :
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 25

Encoding of the scheduler

For SystemC

select
thread

threads
runnable

notification
delta

channel
updates

time
acceleration

threads
no runnable

notification
timed

channel
updates

notification
delta

run
thread

no fail

no runnable threads

start initialization
phase

phase
evaluation

fail
end

update
phase

proctype Scheduler () {
bool runnable , acce lera ted ;
channel updates () ;
d e l t a n o t i f i c a t i o n () ;

s t a r t D e l t a C y c l e :
ex i s t s runnab le th reads (runnable) ;
ITE (! runnable , goto T imedNot i f i ca t i on , skip) ;
eva luat ion phase () ;
channel updates () ;

p rogress Del taCyc le :
d e l t a n o t i f i c a t i o n () ;
ITE (runnable , goto s ta r t De l t aCyc le , skip) ;

T imedNo t i f i ca t i on :
t i m e a c c e l e r a t i o n (acce lera ted) ;
ITE (accelerated , goto SchedulerExi t , skip) ;
t i m e d n o t i f i c a t i o n () ;
goto s t a r t D e l t a C y c l e ;

Schedu lerEx i t :
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 25

Finite-Model for Cooperative Threaded Programs (II)

◮ Encode threads and thread suspension/resume depending
on the encoding of the synchronization thread-scheduler

◮ Thread-To-Process
◮ Thread-To-Atomic-Block
◮ One-Atomic-Block

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 26

Thread-To-Process Encoding

Threads and scheduler as separate processes, synchronization
scheduler-threads through token exchange on a rendezvous
channel

Atomic
Promela

Block

Promela
Process

E
nc

od
in

g
of

T
hr

ea
d

T
N

E
nc

od
in

g
of

T
hr

ea
d

T
1

SystemC Scheduler
Encoding of

Evaluation Phase

..........

..........

..........

i n l i n e thread suspend () { thread chan !TK ;
thread chan?TK;}

act ive proctype th read 1 () {
t h read 1 en t r y :
atomic { thread 1 chan?TK; thread 1 body () ; }

t h r e a d 1 e x i t :
goto t h read 1 en t r y ;

}

i n l i n e eva luat ion phase () {
do

: : t h r e a d 1 s t a t e == RUNNABLE −>
t h r e a d 1 s t a t e = RUNNING;
thread 1 chan !TK ; thread 1 chan?TK ;. . .

: : t h read N s ta te == RUNNABLE −>
t h read N s ta te = RUNNING;
thread N chan !TK ; thread N chan?TK ;

: : else −> break ;
od ;

}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 27

Thread-To-Atomic-Block Encoding

Threads and scheduler embedded in a unique process, thread
suspension through jump to the exit location, no need of the
rendezvous channel. Each thread body enclosed in an atomic
block

Atomic
Promela

Block

Promela
Process

E
nc

od
in

g
of

T
hr

ea
d

T
N

E
nc

od
in

g
of

T
hr

ea
d

T
1

Encoding of
SystemC Scheduler

............

............

............

Evaluation Phase

i n l i n e th read 1 () {
atomic { thread 1 body () ; }

t h r e a d 1 e x i t :
skip ;

}

i n l i n e eva luat ion phase () {
do

: : t h r e a d 1 s t a t e == RUNNABLE −>
t h r e a d 1 s t a t e = RUNNING; thread 1 () ;

. . .
: : t h read N s ta te == RUNNABLE −>

t h read N s ta te = RUNNING; thread N () ;
: : else −> break ;

od ;
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 28

One-Atomic-Block Encoding

Derived from Thread-To-Atomic-Block enclosing whole
evaluation phase into an atomic block

Atomic
Promela

Block

Promela
Process

E
nc

od
in

g
of

T
hr

ea
d

T
1

E
nc

od
in

g
of

T
hr

ea
d

T
N

Encoding of
SystemC Scheduler

............

............

............

Evaluation Phase

proctype scheduler () {
. . .
atomic {

eva luat ion phase () ;
}
. . .

}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 29

Limitations of Finite State Model for CTPs

◮ Under-approximation
◮ There might be different inputs for which the property is

violated
◮ Partial Order Reduction (POR) within model checker can

be ineffective
◮ POR should be carried out at the level of the Scheduler
◮ Explicit state model checkers (e.g. SPIN) do POR at

process level
◮ Useful domain information lost in the encoding

◮ State explosion

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 30

Symbolic Model Checking of Sequential Software

Translate cooperative threads into sequential C program

Cooperative Threads

Thread T1

Thread T2

Thread T3 Scheduler

T2 T3T1

Sequential C file

Abstraction
Lazy

SW Model Checker
Sequential C

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 31

Symbolic Model Checking of Sequential Software

Translate cooperative threads into sequential C program

Cooperative Threads

Thread T1

Thread T2

Thread T3 Scheduler

T2 T3T1

Sequential C file

Abstraction
Lazy

SW Model Checker
Sequential C

Analysis can be based on:

◮ Bounded Model Checking [CKL04]
◮ Lazy Predicate Abstraction [HJMS02]
◮ Lazy Abstraction with Interpolants [McM06]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 31

Sequentializing Cooperative Threads

◮ Encode each thread as a function

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Sequentializing Cooperative Threads

◮ Encode each thread as a function
◮ Thread suspension as function return:

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
return ;

NEXT LOC LABEL :
l o c a l = g loba l ;

void thread () {
i f (thread pc == NEXT LOC)

goto NEXT LOC LABEL ;

/∗∗ Thread body ∗∗ /
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Sequentializing Cooperative Threads

◮ Encode each thread as a function
◮ Thread suspension as function return:

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
return ;

NEXT LOC LABEL :
l o c a l = g loba l ;

void thread () {
i f (thread pc == NEXT LOC)

goto NEXT LOC LABEL ;

/∗∗ Thread body ∗∗ /
}

◮ Encode thread communication primitives opening their
definition

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Sequentializing Cooperative Threads

◮ Encode each thread as a function
◮ Thread suspension as function return:

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
return ;

NEXT LOC LABEL :
l o c a l = g loba l ;

void thread () {
i f (thread pc == NEXT LOC)

goto NEXT LOC LABEL ;

/∗∗ Thread body ∗∗ /
}

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a function:

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Sequentializing Cooperative Threads

◮ Encode each thread as a function
◮ Thread suspension as function return:

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
return ;

NEXT LOC LABEL :
l o c a l = g loba l ;

void thread () {
i f (thread pc == NEXT LOC)

goto NEXT LOC LABEL ;

/∗∗ Thread body ∗∗ /
}

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a function:
◮ Must allow for exploring all possible thread interleavings:

while (ex i s t s runnab le t h read ()) {
i f (t h r e a d i s t a t e == RUNNABLE && nondet ())

t h r e a d i () ;
. . .
i f (t h r e a d j s t a t e == RUNNABLE && nondet ())

t h r e a d j () ;
}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Sequentializing Cooperative Threads

◮ Encode each thread as a function
◮ Thread suspension as function return:

wait (. . .) ; =⇒

t h r e a d s t a t e = WAITING ;
thread pc = NEXT LOC;
g loba l = l o c a l ;
return ;

NEXT LOC LABEL :
l o c a l = g loba l ;

void thread () {
i f (thread pc == NEXT LOC)

goto NEXT LOC LABEL ;

/∗∗ Thread body ∗∗ /
}

◮ Encode thread communication primitives opening their
definition

◮ Encode Scheduler as a function:
◮ Must allow for exploring all possible thread interleavings:

while (ex i s t s runnab le t h read ()) {
i f (t h r e a d i s t a t e == RUNNABLE && nondet ())

t h r e a d i () ;
. . .
i f (t h r e a d j s t a t e == RUNNABLE && nondet ())

t h r e a d j () ;
}

[CMNR10, CNR13] shows sequentialization for SystemC

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 32

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

◮ Initial abstractions are often too aggressive
◮ Many refinements are needed to recover details of models

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

◮ Initial abstractions are often too aggressive
◮ Many refinements are needed to recover details of models

◮ Precise scheduler and its states are often needed:

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

◮ Initial abstractions are often too aggressive
◮ Many refinements are needed to recover details of models

◮ Precise scheduler and its states are often needed:
◮ Lazy predicate abstraction

◮ Need to keep track of predicates
thread state == WAITING,
thread state == RUNNABLE
for every thread

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

◮ Initial abstractions are often too aggressive
◮ Many refinements are needed to recover details of models

◮ Precise scheduler and its states are often needed:
◮ Lazy predicate abstraction

◮ Need to keep track of predicates
thread state == WAITING,
thread state == RUNNABLE
for every thread

◮ The more predicates to keep track, the more expensive the
abstractions

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Limitations of Sequentialization for CTPs

◮ Bounded Model Checking requires too deep analysis and
often blows up even on small programs

◮ Initial abstractions are often too aggressive
◮ Many refinements are needed to recover details of models

◮ Precise scheduler and its states are often needed:
◮ Lazy predicate abstraction

◮ Need to keep track of predicates
thread state == WAITING,
thread state == RUNNABLE
for every thread

◮ The more predicates to keep track, the more expensive the
abstractions

◮ Lazy abstraction with interpolants
◮ Slow convergence
◮ Large interpolants

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 33

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .
◮ Analyze threads symbolically using lazy predicate

abstraction.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .
◮ Analyze threads symbolically using lazy predicate

abstraction.
◮ Analyze scheduler using explicit-state techniques:

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .
◮ Analyze threads symbolically using lazy predicate

abstraction.
◮ Analyze scheduler using explicit-state techniques:

◮ Keep track of the scheduler states explicitly

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .
◮ Analyze threads symbolically using lazy predicate

abstraction.
◮ Analyze scheduler using explicit-state techniques:

◮ Keep track of the scheduler states explicitly

◮ Scheduler is part of the model-checking algorithm

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Model Checking with ESST
Explicit-Scheduler Symbolic-Thread (ESST) algorithm

Abstraction
Lazy

ESST
Threaded C file

Cooperative Threads

Scheduler
T1 T2 T3

Thread T1

Thread T2

Thread T3

In a nutshell . . .
◮ Analyze threads symbolically using lazy predicate

abstraction.
◮ Analyze scheduler using explicit-state techniques:

◮ Keep track of the scheduler states explicitly

◮ Scheduler is part of the model-checking algorithm

[CMNR10, CNR13] shows ESST for SystemC, [CNR12a] for
FairThreads

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 34

Abstract Reachability Forest (ARF)

◮ An abstract reachability forest (ARF) consists of connected
abstract reachability trees ART’s

◮ Each ART is obtained by unwinding the CFG of running
thread

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 35

Abstract Reachability Forest (ARF)

◮ An abstract reachability forest (ARF) consists of connected
abstract reachability trees ART’s

◮ Each ART is obtained by unwinding the CFG of running
thread

◮ An ARF node with N threads:

(〈l1, ϕ1〉, . . . , 〈lN , ϕN〉, ϕ,S)

◮ 〈li , ϕi〉 where li CFG location and ϕi region of thread i
◮ ϕ is global region (e.g., for shared variables)
◮ S is scheduler state: mapping from variables to values

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 35

Primitive Executor

◮ Primitive executor

SEXEC : SchedulerState × PrimitiveCall → SchedulerState

Example:

S′ = SEXEC(S, wait event(e)), such that

S′ = S[tstate 7→ WAITING, tevent 7→ e]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 36

Scheduler

◮ Scheduler

SCHED : SchedulerState → P(SchedulerState)

{S1, . . . ,Sm} = SCHED(S)
◮ No running thread in S
◮ Each Si for i = 1, . . . ,m has exactly one running thread

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 37

ESST Algorithm: ARF Construction

Computing successor nodes involves:

◮ Computing abstract strongest post-condition SP
◮ Executing primitive functions
◮ Running the scheduler

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 38

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ARF

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ARF
◮ Goto 1 to reconstruct ARF

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Analysis

On-the-fly construction of an ARF with CEGAR

1. Pick an ARF node

2. Compute abstract successors
3. If reach the error location:

analyze path
◮ If path is feasible ⇒

program is unsafe
◮ If path is spurious:

◮ Discover predicates to
refine abstraction

◮ Undo part of ARF
◮ Goto 1 to reconstruct ARF

4. ARF is safe ⇒ program is safe

main

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 39

ESST Algorithm: ARF Construction (Rule 1)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 40

ESST Algorithm: ARF Construction (Rule 1)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

〈l ′i , ϕ
′
i 〉,

SPπi
op(ψi)

◮ ψi ⇔ ϕi ∧ ϕ

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 40

ESST Algorithm: ARF Construction (Rule 1)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

〈l ′i , ϕ
′
i 〉, ϕ′,

SPπi
op(ψi) SPπ

op(ϕ)

◮ ψi ⇔ ϕi ∧ ϕ

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 40

ESST Algorithm: ARF Construction (Rule 1)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ′
1〉, . . . 〈l ′i , ϕ

′
i 〉, . . . 〈ln, ϕ′

n〉, ϕ′,

SPπ1
HAVOC(op)(ψ1) SPπi

op(ψi) SPπn
HAVOC(op)(ψn) SPπ

op(ϕ)

◮ ψi ⇔ ϕi ∧ ϕ

◮ Havoc HAVOC (g := e) = (g := f)
◮ g is a global variable
◮ f is a fresh variable

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 40

ESST Algorithm: ARF Construction (Rule 1)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ′
1〉, . . . 〈l ′i , ϕ

′
i 〉, . . . 〈ln, ϕ′

n〉, ϕ′, S)

SPπ1
HAVOC(op)(ψ1) SPπi

op(ψi) SPπn
HAVOC(op)(ψn) SPπ

op(ϕ)

◮ ψi ⇔ ϕi ∧ ϕ

◮ Havoc HAVOC (g := e) = (g := f)
◮ g is a global variable
◮ f is a fresh variable

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 40

ESST Algorithm: ARF Construction (Rule 2)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call.

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 41

ESST Algorithm: ARF Construction (Rule 2)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call.

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ1〉, . . . 〈l ′i , ϕi 〉, . . . 〈ln, ϕn〉, ϕ,

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 41

ESST Algorithm: ARF Construction (Rule 2)

Thread i is the running thread in S, and op in the CFA edge
(li , op, l ′i) is not a primitive function call.

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ1〉, . . . 〈l ′i , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S′)

SEXEC(S, op)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 41

ESST Algorithm: ARF Construction (Rule 3)

No running thread in S

(. . . ,S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 42

ESST Algorithm: ARF Construction (Rule 3)

No running thread in S

(. . . ,S)

(. . . ,S1) . . . (. . . ,Si) . . . (. . . ,Sm)

◮ {S1, . . . ,Sm} = SCHED(S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 42

ESST Algorithm: ARF Construction (Rule 3)

No running thread in S

(. . . ,S)

(. . . ,S1)

ART1

. . . (. . . ,Si)

ARTi

. . . (. . . ,Sm)

ARTm

◮ {S1, . . . ,Sm} = SCHED(S)

◮ (. . . ,S) (. . . ,Si) is ARF connector

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 42

ESST Algorithm: Coverage

◮ Coverage check

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ′
1〉, . . . 〈li , ϕ′

i 〉, . . . 〈ln, ϕ′
n〉, ϕ′, S′)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 43

ESST Algorithm: Coverage

◮ Coverage check

(〈l1, ϕ1〉, . . . 〈li , ϕi 〉, . . . 〈ln, ϕn〉, ϕ, S)

(〈l1, ϕ′
1〉, . . . 〈li , ϕ′

i 〉, . . . 〈ln, ϕ′
n〉, ϕ′, S′)

covered covered covered |= =

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 43

ESST Algorithm: Feasibility Check

◮ Feasibility check

ARF Path π

0 1 2 3 4
op1 wait event(e) scheduler op2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 44

ESST Algorithm: Feasibility Check

◮ Feasibility check

ARF Path π

0 1 2 3 4
op1 wait event(e) scheduler op2

thread 1 thread 2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 44

ESST Algorithm: Feasibility Check

◮ Feasibility check

ARF Path π

0 1 2 3 4
op1 wait event(e) scheduler op2

thread 1 thread 2

ARF path π′

0 1 2, 3 4
op1 nop op2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 44

ESST Algorithm: Feasibility Check

◮ Feasibility check

ARF Path π

0 1 2 3 4
op1 wait event(e) scheduler op2

thread 1 thread 2

ARF path π′

0 1 2, 3 4
op1 nop op2

π is feasible iff so is π′

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 44

Correctness of ESST

Theorem
Let P be a threaded sequential program. For every terminating
execution of ESST(P), we have the following properties:

1. If ESST(P) returns a feasible counter-example path ρ̂,

then we have γ
ρ̂
→ γ′ for an initial configuration γ and an

error configuration γ′ of P

2. If ESST(P) returns a safe ARF F , then for every
configuration γ ∈ Reach(P), there is an ARF node
η ∈ Nodes(F) such that γ |= η

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 45

Limitations of ESST for CTPs

T1 T2 T3

Runnable

Running

Sleeping

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Impacts on ESST:

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Impacts on ESST:
◮ More abstract states to explore

◮ Expensive abstract post image computations

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Impacts on ESST:
◮ More abstract states to explore

◮ Expensive abstract post image computations
◮ More refinements, more predicates to keep track

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Impacts on ESST:
◮ More abstract states to explore

◮ Expensive abstract post image computations
◮ More refinements, more predicates to keep track

⇒ Degrade performace of ESST + State explosion

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Limitations of ESST for CTPs

T1 T2 T3

T1 T3T2

T1 T3T2

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T3T2

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 T2 T3

Runnable

Running

Sleeping

Given n threads: n! interleavings, at least 2n abstract states

Impacts on ESST:
◮ More abstract states to explore

◮ Expensive abstract post image computations
◮ More refinements, more predicates to keep track

⇒ Degrade performace of ESST + State explosion
◮ Apply partial-order reduction to ESST [CNR11]

◮ Allow ESST to explore only representative interleavings
Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 46

Partial-Order Reduction (POR)

Idea of POR

Exploit independence and commutativity of transitions

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 47

Partial-Order Reduction (POR)

Idea of POR

Exploit independence and commutativity of transitions

Two transitions are independent if

1. they neither disable nor enable
each other

2. they commute α

α

β

β

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 47

Persistent Set

Persistent Set

A set P of transitions is persis-
tent in a state s if the transitions
are independent of every αi 6∈ P
reachable from s

...

Independent

s

α1

α2

α3

α4

α5

αi

αj

αk

αl

P

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 48

Persistent Set

Persistent Set

A set P of transitions is persis-
tent in a state s if the transitions
are independent of every αi 6∈ P
reachable from s

⇒ One only needs to explore P

...

Independent

s

α1

α2

α3

α4

α5

αi

αj

αk

αl

P

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 48

Requirements for Verifying Safety Properties

1. Successor-state condition: persistent set P in state s is
empty iff no enabled transitions in s

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 49

Requirements for Verifying Safety Properties

1. Successor-state condition: persistent set P in state s is
empty iff no enabled transitions in s

2. Cycle condition: disallow

α

s1

s2

s3

s4

s5

sn

α is enabled in si but not in the persistent sets of s1, . . . , sn

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 49

Identifying Atomic Blocks

An atomic block correspond to a non-interleaved transition

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 50

Identifying Atomic Blocks

An atomic block correspond to a non-interleaved transition

l0

l1

l2 l3

l4

l5

l6l7

.

wait*(. . .)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 50

Identifying Atomic Blocks

An atomic block correspond to a non-interleaved transition

l0

l1

l2 l3

l4

l5

l6l7

.

wait*(. . .)

Fragment between two wait*(...)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 50

Identifying Atomic Blocks

An atomic block correspond to a non-interleaved transition

l0

l1

l2 l3

l4

l5

l6l7

.

wait*(. . .)

Fragment between two wait*(...)

Identify an atomic block by its entry:

1. Entry: lo, Exit: l5, l7

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 50

Identifying Atomic Blocks

An atomic block correspond to a non-interleaved transition

l0

l1

l2 l3

l4

l5

l6l7

.

wait*(. . .)

Fragment between two wait*(...)

Identify an atomic block by its entry:

1. Entry: lo, Exit: l5, l7
2. Entry: l5, Exit: l5, l7

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 50

Atomic Block (In)dependence

Atomic blocks α and β are dependent if
◮ α writes to global g, and β writes to or reads from g

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 51

Atomic Block (In)dependence

Atomic blocks α and β are dependent if
◮ α writes to global g, and β writes to or reads from g
◮ α immediately notifies event e, and β waits for e

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 51

Atomic Block (In)dependence

Atomic blocks α and β are dependent if
◮ α writes to global g, and β writes to or reads from g
◮ α immediately notifies event e, and β waits for e
◮ α delay notifies event e, and β cancels e’s notification

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 51

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

1. Let S = SCHED(S).

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

1. Let S = SCHED(S).

2. Collect enabled atomic blocks:
AB = {li | ∃S ∈ S.S(ti) = Running}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

1. Let S = SCHED(S).

2. Collect enabled atomic blocks:
AB = {li | ∃S ∈ S.S(ti) = Running}

3. Let PersistentAB ⊆ AB
◮ Reuse existing techniques for explicit-state model checking!

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

1. Let S = SCHED(S).

2. Collect enabled atomic blocks:
AB = {li | ∃S ∈ S.S(ti) = Running}

3. Let PersistentAB ⊆ AB
◮ Reuse existing techniques for explicit-state model checking!

4. Let S ′ = {S ∈ S | S(ti) = Running ∧ li ∈ PersistentAB}

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

The Function PERSISTENT

Compute persistent scheduler states:

PERSISTENT : ARFNodes → SchedulerStates

Let N = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S)

PERSISTENT(N):

1. Let S = SCHED(S).

2. Collect enabled atomic blocks:
AB = {li | ∃S ∈ S.S(ti) = Running}

3. Let PersistentAB ⊆ AB
◮ Reuse existing techniques for explicit-state model checking!

4. Let S ′ = {S ∈ S | S(ti) = Running ∧ li ∈ PersistentAB}

5. Return S ′

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 52

Extension of ESST Rule: Persistent Set
No running thread in S

N = (. . . ,S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 53

Extension of ESST Rule: Persistent Set
No running thread in S

N = (. . . ,S)

(. . . ,S1) . . . (. . . ,Si) . . . (. . . ,Sm)

◮ {S1, . . . ,Sm} = SCHED(S)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 53

Extension of ESST Rule: Persistent Set
No running thread in S

N = (. . . ,S)

(. . . ,S1)

Tree

. . . (. . . ,Si)

Tree

. . . (. . . ,Sm)

Tree

◮ {S1, . . . ,Sm} = SCHED(S)

◮ (. . . ,S) (. . . ,Si) connects two trees

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 53

Extension of ESST Rule: Persistent Set
No running thread in S

N = (. . . ,S)

(. . . ,S1)

Tree

. . . (. . . ,Si)

Tree

. . . (. . . ,Sm)

Tree

◮ {S1, . . . ,Sm} = SCHED(S) PERSISTENT(N)

◮ (. . . ,S) (. . . ,Si) connects two trees

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 53

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running

N0

Ni

Nm−1

Nm

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running
◮ If Nm is subsumed by Ni

N0

Ni

Nm−1

Nm

is subsumed

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running
◮ If Nm is subsumed by Ni

◮ There is a potential cycle

N0

Ni

Nm−1

Nm

is subsumed

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running
◮ If Nm is subsumed by Ni

◮ There is a potential cycle
◮ Optional: check feasibility

N0

Ni

Nm−1

Nm

is subsumed

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running
◮ If Nm is subsumed by Ni

◮ There is a potential cycle
◮ Optional: check feasibility

◮ If Nm−1 is not fully expanded
(PERSISTENT(Nm−1) ⊂ SCHED(Sm−1)):

N0

Ni

Nm−1

Nm

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Extension of ESST Rule: Cycle Condition

◮ Use persistent set for node expansions
◮ N0, . . . ,Nm are non-running
◮ If Nm is subsumed by Ni

◮ There is a potential cycle
◮ Optional: check feasibility

◮ If Nm−1 is not fully expanded
(PERSISTENT(Nm−1) ⊂ SCHED(Sm−1)):

◮ Fully expand Nm−1

N0

Ni

Nm−1

Nm

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 54

Correctness of ESST+POR

Theorem
Let P be a threaded sequential program. For every terminating
executions of ESST(P) and ESSTPOR(P), we have that
ESST(P) reports safe iff so does ESSTPOR(P).

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 55

Limitations of ESST +POR

◮ POR could interact negatively with ESST

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example

N0

N1

N2

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example
◮ Impacts on ESST:

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example
◮ Impacts on ESST:

◮ More abstract states to explore

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example
◮ Impacts on ESST:

◮ More abstract states to explore
◮ More refinements

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example
◮ Impacts on ESST:

◮ More abstract states to explore
◮ More refinements
◮ More predicates to keep track

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Limitations of ESST +POR

◮ POR could interact negatively with ESST
◮ Example: longer counter example
◮ Impacts on ESST:

◮ More abstract states to explore
◮ More refinements
◮ More predicates to keep track

⇒ Degrade performance of ESST
◮ Experimental evaluation does not show

this behavior

N6

N5

N4

N3

N0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 56

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

KRATOS: Overview

◮ KRATOS is a software model checker for sequential and
threaded programs with cooperative scheduler

1 N

N1

Yes

Counteresample

Φ Φ

ΦΦ

Threaded C file

Sequential C file

T1 T2 T3

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 57

KRATOS: Overview

◮ KRATOS is a software model checker for sequential and
threaded programs with cooperative scheduler

1 N

N1

Yes

Counteresample

Φ Φ

ΦΦ

Threaded C file

Sequential C file

T1 T2 T3

◮ KRATOS verifies safety properties in the form of program
assertion

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 57

KRATOS: Overview (II)
◮ Analyses for sequential programs:

◮ Sequential analysis:
◮ Lazy abstraction [HJMS02]
◮ Lazy abstraction with interpolation [McM06]
◮ Property Driven Reachability for Software [CG12]

◮ Symbolic Model Checking via reduction to NUSMV
◮ BDD based reachability analysis for finite domains

programs

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 58

KRATOS: Overview (II)
◮ Analyses for sequential programs:

◮ Sequential analysis:
◮ Lazy abstraction [HJMS02]
◮ Lazy abstraction with interpolation [McM06]
◮ Property Driven Reachability for Software [CG12]

◮ Symbolic Model Checking via reduction to NUSMV
◮ BDD based reachability analysis for finite domains

programs
◮ Analyses for threaded programs:

◮ Reduction to finite model and analysis with
SPIN [CCNR11, CNR13]

◮ Reduction to sequential analysis [CNR13, CMNR10]
◮ Concurrent analysis:

◮ Explicit-Scheduler/Symbolic Threads [CNR12a, CMNR10]
◮ Semi-Symbolic-Scheduler/Symbolic-Threads [CNR12b]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 58

KRATOS: Overview (II)
◮ Analyses for sequential programs:

◮ Sequential analysis:
◮ Lazy abstraction [HJMS02]
◮ Lazy abstraction with interpolation [McM06]
◮ Property Driven Reachability for Software [CG12]

◮ Symbolic Model Checking via reduction to NUSMV
◮ BDD based reachability analysis for finite domains

programs
◮ Analyses for threaded programs:

◮ Reduction to finite model and analysis with
SPIN [CCNR11, CNR13]

◮ Reduction to sequential analysis [CNR13, CMNR10]
◮ Concurrent analysis:

◮ Explicit-Scheduler/Symbolic Threads [CNR12a, CMNR10]
◮ Semi-Symbolic-Scheduler/Symbolic-Threads [CNR12b]

◮ State-of-the-art SMT techniques for abstractions and
refinements

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 58

KRATOS: Overview (II)
◮ Analyses for sequential programs:

◮ Sequential analysis:
◮ Lazy abstraction [HJMS02]
◮ Lazy abstraction with interpolation [McM06]
◮ Property Driven Reachability for Software [CG12]

◮ Symbolic Model Checking via reduction to NUSMV
◮ BDD based reachability analysis for finite domains

programs
◮ Analyses for threaded programs:

◮ Reduction to finite model and analysis with
SPIN [CCNR11, CNR13]

◮ Reduction to sequential analysis [CNR13, CMNR10]
◮ Concurrent analysis:

◮ Explicit-Scheduler/Symbolic Threads [CNR12a, CMNR10]
◮ Semi-Symbolic-Scheduler/Symbolic-Threads [CNR12b]

◮ State-of-the-art SMT techniques for abstractions and
refinements

◮ Advanced techniques for handling multiple
assertions [CCL+12]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 58

Software Model Checking of Multiple Assertions

Typically SW model checkers stops once they find a violated
assertion, and returns a counterexample

◮ For finding all violated assertions: one assertion at a time
in the program under analysis

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 59

Software Model Checking of Multiple Assertions

Typically SW model checkers stops once they find a violated
assertion, and returns a counterexample

◮ For finding all violated assertions: one assertion at a time
in the program under analysis

Verifying one assertion at a time may be unfeasible
◮ Computation starts from scratch each time

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 59

Software Model Checking of Multiple Assertions

Typically SW model checkers stops once they find a violated
assertion, and returns a counterexample

◮ For finding all violated assertions: one assertion at a time
in the program under analysis

Verifying one assertion at a time may be unfeasible
◮ Computation starts from scratch each time

Software model checkers may fail to discover all the violated
assertions because the way they interpret “assert”

assert(Φ)

[Φ] ![Φ]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 59

Software Model Checking of Multiple Assertions

Typically SW model checkers stops once they find a violated
assertion, and returns a counterexample

◮ For finding all violated assertions: one assertion at a time
in the program under analysis

Verifying one assertion at a time may be unfeasible
◮ Computation starts from scratch each time

Software model checkers may fail to discover all the violated
assertions because the way they interpret “assert”

assert(Φ)

[Φ] ![Φ]

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

[b1!=0] ![b1!=0]

![b1+b2!=0][b1+b2!=0]
2nd assertion cannot be violated:
it is blocked by the 1st one

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 59

Software Model Checking of Multiple Assertions (II)

◮ Modify the interpretation of assert to
enable handling of multiple assertions and
produce a counterexample for all violated
assertions

◮ Interpret assertions-as-properties

assert(Φ)

⊤ ![Φ]

◮ Extend SW model checking via lazy-predicate abstraction
to deal with multiple assertions

◮ Two search techniques
◮ All-in-one-go
◮ One-at-a-time

◮ Both interpret assertion as properties

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 60

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

b1=0; b2=0

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

b1=0; b2=0

![b1!=0]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

b1=0; b2=0

![b1!=0]⊤

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

b1=0; b2=0

![b1!=0]⊤

![b1+b2!=0]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: All-In-One-Go

◮ When an assertion violation reached, the assertion is
disabled, and the search continues for other possible
violations of other assertions

◮ Search terminates when the ART/ARF is complete

int b1=0, b2=0;
assert(b1 != 0);
assert(b1+b2 != 0);

b1=0; b2=0

⊤ ![b1!=0]

![b1+b2!=0]⊤

b1=0; b2=0

![b1!=0]⊤

![b1+b2!=0]⊤

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 61

SW MC Multiple Assertions: One-At-A-Time

◮ One assertion at a time is checked
◮ Disabling other assertions

. . .
assert(Φ1);
. . .
assert(Φ2);
. . .

[⊤] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 62

SW MC Multiple Assertions: One-At-A-Time

◮ One assertion at a time is checked
◮ Disabling other assertions

◮ ART/ARF used for checking one
assertion re-used for proving the
others

. . .
assert(Φ1);
. . .
assert(Φ2);
. . .

[⊤] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 62

SW MC Multiple Assertions: One-At-A-Time

◮ One assertion at a time is checked
◮ Disabling other assertions

◮ ART/ARF used for checking one
assertion re-used for proving the
others

◮ When an assertion proved to be
safe, CFG strengthened turning
assertion into “standard” semantics

. . .
assert(Φ1);
. . .
assert(Φ2);
. . .

[⊤] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

[Φ1] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 62

SW MC Multiple Assertions: One-At-A-Time

◮ One assertion at a time is checked
◮ Disabling other assertions

◮ ART/ARF used for checking one
assertion re-used for proving the
others

◮ When an assertion proved to be
safe, CFG strengthened turning
assertion into “standard” semantics

. . .
assert(Φ1);
. . .
assert(Φ2);
. . .

[⊤] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

[Φ1] ![Φ2]

[⊤] ![Φ2]

[⊤] ![Φ1]

[⊤] ![Φ2]

◮ Enables for several optimizations
◮ On-the-fly slicing with respect to the checked assertion
◮ Partitioning the predicates used to prove each assertion
◮ Collecting loop invariants from the constructed ART/ARF to

be used to possibly strengthen the successive searches

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 62

Architecture of KRATOS

◮ Front-end:
◮ Parser and Type checker
◮ CFG encoder: single-block, basic-block and large-block

[BCG+09] encodings
◮ Optimization: constant propagation, dead-code elimination,

cone-of-influence reduction

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 63

Architecture of KRATOS

◮ Front-end:
◮ Parser and Type checker
◮ CFG encoder: single-block, basic-block and large-block

[BCG+09] encodings
◮ Optimization: constant propagation, dead-code elimination,

cone-of-influence reduction
◮ Analysis:

◮ Abstraction structure: CFG locations, data states as
formulas, call stack

◮ Node expander: compute successor abstract states
◮ Scheduler: implement some scheduling policy
◮ Primitive executor: execute API for querying and updating

scheduler states (SystemC and FairThreads)
◮ Counter-example builder and Refiner

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 63

Architecture of KRATOS

◮ Front-end:
◮ Parser and Type checker
◮ CFG encoder: single-block, basic-block and large-block

[BCG+09] encodings
◮ Optimization: constant propagation, dead-code elimination,

cone-of-influence reduction
◮ Analysis:

◮ Abstraction structure: CFG locations, data states as
formulas, call stack

◮ Node expander: compute successor abstract states
◮ Scheduler: implement some scheduling policy
◮ Primitive executor: execute API for querying and updating

scheduler states (SystemC and FairThreads)
◮ Counter-example builder and Refiner

◮ Backend: NUSMV and MATHSAT
◮ Advanced techniques for boolean predicate abstraction
◮ Entailment checks in abstract state coverage
◮ Feasibility checks of counter-examples (via SMT)

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 63

Architecture of KRATOS

ART ARF

Counter−example builder Refiner

Lazy abstraction

NuSMV

Symbol table

Type checkerASTParser

C program

CFA encoder

CFAs

Analyses and

Optimizations

CFAs

Scheduler
state

Thread and event
extractor

Sequential analysis

Precision

Node expander

Abs. Structure

Concurrent analysis

Node expander

Precision

Scheduler

Primitive
executor

Abs. Structure

MathSAT

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 64

KRATOS: Availability

◮ KRATOS can be downloaded at
http://es.fbk.eu/tools/kratos

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 65

http://es.fbk.eu/tools/kratos

KRATOS: Availability

◮ KRATOS can be downloaded at
http://es.fbk.eu/tools/kratos

◮ Free for academic and research purposes

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 65

http://es.fbk.eu/tools/kratos

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Experimental Evaluation Setup

◮ Benchmarks:
◮ SystemC benchmarks taken and extended from literature
◮ FairThreads benchmarks taken from the literature and

adapted from SystemC
◮ Industrial benchmarks from railway application from

Ansaldo STS

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 66

Experimental Evaluation Setup

◮ Benchmarks:
◮ SystemC benchmarks taken and extended from literature
◮ FairThreads benchmarks taken from the literature and

adapted from SystemC
◮ Industrial benchmarks from railway application from

Ansaldo STS

◮ Evaluated ESST w.r.t. sequentialization

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 66

Experimental Evaluation Setup

◮ Benchmarks:
◮ SystemC benchmarks taken and extended from literature
◮ FairThreads benchmarks taken from the literature and

adapted from SystemC
◮ Industrial benchmarks from railway application from

Ansaldo STS

◮ Evaluated ESST w.r.t. sequentialization
◮ Evaluated POR techniques

◮ Persistent set, Sleep set, Persistent + Sleep set

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 66

Experimental Evaluation Setup

◮ Benchmarks:
◮ SystemC benchmarks taken and extended from literature
◮ FairThreads benchmarks taken from the literature and

adapted from SystemC
◮ Industrial benchmarks from railway application from

Ansaldo STS

◮ Evaluated ESST w.r.t. sequentialization
◮ Evaluated POR techniques

◮ Persistent set, Sleep set, Persistent + Sleep set

◮ Evaluated finite-model and analysis with SPIN

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 66

Experimental Evaluation Setup

◮ Benchmarks:
◮ SystemC benchmarks taken and extended from literature
◮ FairThreads benchmarks taken from the literature and

adapted from SystemC
◮ Industrial benchmarks from railway application from

Ansaldo STS

◮ Evaluated ESST w.r.t. sequentialization
◮ Evaluated POR techniques

◮ Persistent set, Sleep set, Persistent + Sleep set

◮ Evaluated finite-model and analysis with SPIN
◮ Resource limit: time limit 1000s, memory limit 2GB

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 66

SystemC Benchmarks

Finite-State Models Sequentialization Threaded
Benchmarks V PROMELA +SPIN Eager Lazy PA Lazy AWI BMC ESST

T2P T2AB 1AB SATABS BLAST CPACHECKER KRATOS WOLVERINE KRATOS CBMC

bist-cell S - - - 31.740 5.300 7.340 0.400 T.O. 0.300 - 1.390
kundu-bug-1 U 0.001 0.010 0.001 33.730 105.850 24.310 25.000 205.370 25.590 1.080 0.590
kundu-bug-2 U 0.001 0.001 0.001 79.160 Err 17.710 0.890 580.990 11.200 2.450 0.500
kundu S - - - 96.460 Err 35.620 151.490 T.O. T.O. - 1.090
mem-slave-tlm.1 S - - - 69.150 80.360 120.060 139.790 78.920 40.590 - 3.500
mem-slave-tlm.3 S - - - 385.410 745.690 M.O. T.O. 470.890 596.250 - 42.690
mem-slave-tlm.5 S - - - T.O. Err T.O. T.O. T.O. T.O. - 280.260
mem-slave-tlm-bug.1 U 0.001 0.001 0.001 83.140 84.420 42.190 13.800 90.710 27.790 53.750 2.600
mem-slave-tlm-bug.3 U 0.010 0.001 0.001 719.070 763.640 M.O. T.O. 505.100 687.150 55.850* 33.390
mem-slave-tlm-bug.5 U 0.001 0.001 0.010 T.O. Err M.O. T.O. T.O. T.O. 56.890* 207.970
mem-slave-tlm-bug2.1 U 0.001 0.001 0.001 75.610 82.070 33.160 2.790 85.830 18.000 54.770 1.400
mem-slave-tlm-bug2.3 U 0.150 0.130 0.300 391.900 T.O. 71.680 18.390 T.O. 401.870 56.400* 12.290
mem-slave-tlm-bug2.5 U 21.000 17.000 43.300 T.O. Err 158.580 85.090 T.O. T.O. 58.960* 40.490
pc-sfifo-1 S - - - 3.490 20.350 16.960 3.300 13.690 3.590 - 0.300
pc-sfifo-2 S - - - 4.810 34.650 25.820 8.400 32.430 25.590 - 0.500
pipeline-bug U 0.001 0.001 0.001 737.320 T.O. 54.840 13.600 T.O. 103.290 - 6.400
pipeline S - - - T.O. T.O. 67.630 T.O. T.O. T.O. - 81.790
token-ring.1 S - - - 9.970 6.360 11.940 4.300 49.880 3.500 - 0.100
token-ring.5 S - - - 814.160 T.O. M.O. T.O. T.O. T.O. - 0.400
token-ring.9 S - - - T.O. T.O. M.O. T.O. T.O. T.O. - 1.100
token-ring.13 S - - - T.O. M.O. M.O. T.O. T.O. T.O. 290.450 4.500
token-ring-bug.1 U 0.001 0.001 0.001 5.460 3.300 14.870 1.500 T.O. 2.590 1.620 0.001
token-ring-bug.5 U 0.001 0.001 0.001 748.250 T.O. M.O. T.O. T.O. T.O. 15.060 0.100
token-ring-bug.9 U 0.001 0.001 0.001 T.O. T.O. M.O. T.O. T.O. T.O. 95.460 0.300
token-ring-bug.13 U 0.001 0.001 0.001 T.O. M.O. M.O. T.O. T.O. T.O. 288.940 1.790
token-ring-bug2.1 U 0.010 0.001 4.100 5.940 2.480 13.980 2.000 T.O. 1.500 1.090 0.001
token-ring-bug2.5 U T.O. T.O. T.O. 819.060 T.O. M.O. T.O. T.O. T.O. 15.370 0.100
token-ring-bug2.9 U M.O. M.O. T.O. T.O. T.O. M.O. T.O. T.O. T.O. 97.980 0.390
token-ring-bug2.13 U M.O. M.O. T.O. T.O. M.O. M.O. T.O. T.O. T.O. 312.380 2.700
toy-bug-1 U 5.550 5.340 4.560 23.570 241.240 45.650 10.200 T.O. T.O. 1.430 0.490
toy-bug-2 U 5.690 5.290 4.560 19.560 144.610 44.810 3.890 T.O. T.O. 1.410 0.200
toy S - - - 22.150 Err 195.620 T.O. T.O. T.O. - 1.800
transmitter.1 U 0.001 0.001 0.001 2.280 1.190 17.060 1.090 T.O. 0.800 0.430 0.001
transmitter.5 U 0.001 0.001 0.001 224.070 T.O. 353.480 409.670 T.O. T.O. 10.080 0.001
transmitter.9 U 0.001 0.010 0.001 T.O. T.O. M.O. T.O. T.O. T.O. 74.420 0.100
transmitter.13 U 0.001 0.001 0.001 T.O. T.O. T.O. T.O. T.O. T.O. 259.060 0.090

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 67

FairThreads Benchmarks

Name V SATABS CPACHECKER KRATOS Seq CBMC KRATOS ESST

fact1 S 9.07 14.26 2.90 - 0.01
fact1-bug U 22.18 8.06 0.39 15.09 0.01
fact1-mod S 4.41 8.18 0.50 - 0.40
fact2 S 69.05 17.25 15.40 - 0.01
gear-box S T.O T.O T.O - T.O
ft-pc-sfifo1 S 57.08 56.56 44.49 - 0.30
ft-pc-sfifo2 S 715.31 T.O T.O - 0.39
ft-token-ring.3 S 115.66 T.O T.O - 0.48
ft-token-ring.4 S 448.86 T.O T.O - 5.20
ft-token-ring.5 S T.O T.O T.O - 213.37
ft-token-ring.6 S T.O T.O T.O - T.O
ft-token-ring.7 S T.O T.O T.O - T.O
ft-token-ring.8 S T.O T.O T.O - T.O
ft-token-ring.9 S T.O T.O T.O - T.O
ft-token-ring.10 S T.O T.O T.O - T.O
ft-token-ring-bug.3 U 111.10 T.O T.O 158.76 0.10
ft-token-ring-bug.4 U 306.41 T.O T.O *407.36 1.70
ft-token-ring-bug.5 U 860.29 T.O T.O *751.44 66.09
ft-token-ring-bug.6 U T.O T.O T.O T.O T.O
ft-token-ring-bug.7 U T.O T.O T.O T.O T.O
ft-token-ring-bug.8 U T.O T.O T.O T.O T.O
ft-token-ring-bug.9 U T.O T.O T.O T.O T.O
ft-token-ring-bug.10 U T.O T.O T.O T.O T.O

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 68

ESST vs ESST+POR: Run time

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 69

ESST vs ESST+POR: Explored abstract states

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 70

Industrial Benchmarks from Ansaldo STS
Embedded Software from Logica di Sicurezza (LDS) a generic
subsystem of ERTMS developed by Ansaldo STS

◮ An LDS specification
◮ An entity description of the physical and logical entities
◮ A configuration describing a particular physical layout

◮ LDS is specified in VELOS
◮ Structured programming language with a C++ like syntax

developed by Ansaldo STS
◮ Classes for representing Components, Points, EOAs,. . .
◮ Member variables represent the state of the entity
◮ Member functions represent actions to modify member

variables

All properties BLAST SATABS CPACHECKER CBMC KRATOS

Solved 0 0 8 20 53
Safe 0 0 8 - 33

Unsafe 0 0 0 20 20
Time out 2 52 0 0 0

Memory out 43 0 45 0 0
Total time - - 17m:7s 2h:41m:22s 28m:46s

Max space - - 8.4Gb 728.1Mb 5.2Gb

Results presented at [CCL+12]
Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 71

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Related Work

◮ Sequential Software
◮ Many software model checker for sequential software (in C)

◮ CPACHECKER [BK11], BLAST [BHJM07], IMPACT [McM06],
WOLVERINE [WKM12], LLBMC [FMS13] UFO [AGL+13],
SATABS [CKSY05], CBMC [CKL04], . . .

◮ Growing interest:
◮ Software Model Checking competition

http://sv-comp.sosy-lab.org/2014/

◮ Cooperative Threaded Programs
◮ SystemC via reduction to NUSMV [Moy05, MMMC05], and

to PROMELA [TCMM07, MJM10]
◮ SystemC via reduction to software model checking [KS05]
◮ SystemC via reduction to Timed Automata [HFG08]
◮ SystemC via reduction to CADP [GHPS09]
◮ FairThreads via reduction to SIGNAL [JBGT10]
◮ OSEK/VDX via reduction to timed automata [WH08]
◮ SPECC via CEGAR with NUSMV [CJK07]

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 72

http://sv-comp.sosy-lab.org/2014/

Outline
Cooperative Threaded Programs (CTPs)

Background
Safe Sequential Programs
Model Checking of Sequential Programs

Finite Model for Sequential Programs
Symbolic Model Checking of Sequential Programs

Approaches to Model Checking of CTPs
Finite-Model for Cooperative Threaded Programs
Symbolic Model Checking of Sequential Software
Explicit Scheduler and Symbolic Threads (ESST)

The Kratos Software Model Checker

Experimental Results

Related Work

Conclusions

Conclusions

◮ Three directions for software model checking of
cooperative threaded programs

◮ Finite-model encoding and analysis with SPIN
◮ Translation from cooperative threaded programs to

sequential C programs and analysis with any
state-of-the-art software model checker

◮ ESST algorithms
◮ With and without POR

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 73

Conclusions

◮ Three directions for software model checking of
cooperative threaded programs

◮ Finite-model encoding and analysis with SPIN
◮ Translation from cooperative threaded programs to

sequential C programs and analysis with any
state-of-the-art software model checker

◮ ESST algorithms
◮ With and without POR

◮ Instantiated ESST for SystemC and FairThreads

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 73

Conclusions

◮ Three directions for software model checking of
cooperative threaded programs

◮ Finite-model encoding and analysis with SPIN
◮ Translation from cooperative threaded programs to

sequential C programs and analysis with any
state-of-the-art software model checker

◮ ESST algorithms
◮ With and without POR

◮ Instantiated ESST for SystemC and FairThreads
◮ Implemented the KRATOS software model checker

◮ Good performance w.r.t. competitors
◮ Successfully applied in industrial setting

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 73

Conclusions

◮ Three directions for software model checking of
cooperative threaded programs

◮ Finite-model encoding and analysis with SPIN
◮ Translation from cooperative threaded programs to

sequential C programs and analysis with any
state-of-the-art software model checker

◮ ESST algorithms
◮ With and without POR

◮ Instantiated ESST for SystemC and FairThreads
◮ Implemented the KRATOS software model checker

◮ Good performance w.r.t. competitors
◮ Successfully applied in industrial setting

◮ Under integration within Ansaldo STS Design and V&V flow

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 73

Future Work

◮ Semi-Symbolic-Scheduler/Symbolic-Threads (S3ST)
◮ Non-constant arguments to primitive function calls

◮ Preliminary results for SystemC are positive and
encouraging [CNR12b]

◮ Find safety regions of parametric designs exploiting S3ST
◮ Apply ESST paradigm to other specification languages

and application domains
◮ PLC, Automotive, Robotics, etc.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 74

Questions?

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 75

Bibliography I

Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik.
Ufo: Verification with interpolants and abstract interpretation - (competition
contribution).
In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795 of Lecture
Notes in Computer Science, pages 637–640. Springer, 2013.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshan Zhu.
Bounded model checking.
Advances in Computers, 58:117–148, 2003.

Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and
Roberto Sebastiani.
Software model checking via large-block encoding.
In FMCAD, pages 25–32. IEEE, 2009.

D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar.
The software model checker Blast.
STTT, 9(5-6):505–525, 2007.

D. Beyer and M. E. Keremoglu.
CPAchecker: A Tool for Configurable Software Verification.
In G. Gopalakrishnan and S. Qadeer, editors, CAV, volume 6806 of LNCS, pages
184–190. Springer, 2011.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 76

Bibliography II

D. Beyer, M. E. Keremoglu, and P. Wendler.
Predicate abstraction with adjustable-block encoding.
In R. Bloem and N. Sharygina, editors, FMCAD, pages 189–197. IEEE, 2010.

R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. K.
Shyamasundar.
Computing Predicate Abstractions by Integrating BDDs and SMT Solvers.
In FMCAD, pages 69–76. IEEE, 2007.

Alessandro Cimatti, Raffaele Corvino, Armando Lazzaro, Iman Narasamdya,
Tiziana Rizzo, Marco Roveri, Angela Sanseviero, and Andrei Tchaltsev.
Formal verification and validation of ertms industrial railway train spacing system.
In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358 of Lecture
Notes in Computer Science, pages 378–393. Springer, 2012.

D. Campana, A. Cimatti, I. Narasamdya, and M. Roveri.
An analytic evaluation of SystemC encodings in promela.
In A. Groce and M. Musuvathi, editors, SPIN, volume 6823 of LNCS, pages
90–107. Springer, 2011.

A. Cimatti, J. Dubrovin, T. Junttila, and M. Roveri.
Structure-aware computation of predicate abstraction.
In FMCAD, pages 9–16. IEEE, 2009.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 77

Bibliography III
A. Cimatti, A. Franzén, A. Griggio, K. Kalyanasundaram, and M. Roveri.
Tighter integration of BDDs and SMT for Predicate Abstraction.
In Proc. of DATE, pages 1707–1712. IEEE, 2010.

Lucas Cordeiro, Bernd Fischer, and João Marques-Silva.
Smt-based bounded model checking for embedded ansi-c software.
IEEE Trans. Software Eng., 38(4):957–974, 2012.

Alessandro Cimatti and Alberto Griggio.
Software model checking via ic3.
In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358 of Lecture
Notes in Computer Science, pages 277–293. Springer, 2012.

E. M. Clarke, H. Jain, and D. Kroening.
Verification of SpecC using predicate abstraction.
Formal Methods in System Design, 30(1):5–28, 2007.

E. M. Clarke, D. Kroening, and F. Lerda.
A Tool for Checking ANSI-C Programs.
In K. Jensen and A. Podelski, editors, TACAS, volume 2988 of LNCS, pages
168–176. Springer, 2004.

E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-Based Predicate Abstraction for ANSI-C.
In N. Halbwachs and L. D. Zuck, editors, TACAS, volume 3440 of LNCS, pages
570–574. Springer, 2005.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 78

Bibliography IV

A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri.
Verifying systemc: A software model checking approach.
In R. Bloem and N. Sharygina, editors, FMCAD, pages 51–59. IEEE, 2010.

A. Cimatti, I. Narasamdya, and M. Roveri.
Boosting Lazy Abstraction for SystemC with Partial Order Reduction.
In P. A. Abdulla and K. R. M. Leino, editors, TACAS, volume 6605 of LNCS, pages
341–356. Springer, 2011.

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri.
Software model checking with explicit scheduler and symbolic threads.
Logical Methods in Computer Science, 8(2), 2012.

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri.
Verification of parametric system designs.
In Gianpiero Cabodi and Satnam Singh, editors, FMCAD, pages 122–130. IEEE,
2012.

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri.
Software model checking systemc.
IEEE Trans. on CAD of Integrated Circuits and Systems, 32(5):774–787, 2013.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 79

Bibliography V
Stephan Falke, Florian Merz, and Carsten Sinz.
Llbmc: Improved bounded model checking of c programs using llvm -
(competition contribution).
In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795 of Lecture
Notes in Computer Science, pages 623–626. Springer, 2013.

H. Garavel, C. Helmstetter, O. Ponsini, and Wendelin Serwe.
Verification of an industrial SystemC/TLM model using LOTOS and CADP.
In MEMOCODE, pages 46–55. IEEE Computer Society, 2009.

P. Godefroid.
Software Model Checking: The VeriSoft Approach.
F. M. in Sys. Des., 26(2):77–101, 2005.

P. Herber, J. Fellmuth, and S. Glesner.
Model checking SystemC designs using timed automata.
In C. H. Gebotys and G. Martin, editors, CODES+ISSS, pages 131–136. ACM,
2008.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction.
In POPL, pages 58–70. ACM, 2002.

G. J. Holzmann.
Software model checking with SPIN.
Advances in Computers, 65:78–109, 2005.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 80

Bibliography VI

K. Johnson, L. Besnard, T. Gautier, and J. P. Talpin.
A synchronous approach to threaded program verification.
In Proc. of the 10th International Workshop on Automated Verification of Critical
Systems, 2010.

D. Kroening and N. Sharygina.
Formal verification of SystemC by automatic hardware/software partitioning.
In MEMOCODE, pages 101–110. IEEE, 2005.

S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras.
SMT techniques for fast predicate abstraction.
In T. Ball and R. B. Jones, editors, CAV, volume 4144 of LNCS, pages 424–437.
Springer, 2006.

Rüdiger Loos and Volker Weispfenning.
Applying linear quantifier elimination.
Computer Journal, 36(5):450–462, 1993.

K. L. McMillan.
Lazy abstraction with interpolants.
In T. Ball and R. B. Jones, editors, CAV, volume 4144 of LNCS, pages 123–136.
Springer, 2006.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 81

Bibliography VII

K. Marquet, B. Jeannet, and M. Moy.
Efficient Encoding of SystemC/TLM in Promela.
Technical report, Verimag, 2010.
Verimag Research Report no TR-2010-7.

M. Moy, F. Maraninchi, and L. Maillet-Contoz.
Lussy: A toolbox for the analysis of systems-on-a-chip at the transactional level.
In ACSD, pages 26–35. IEEE, 2005.

David Monniaux.
A Quantifier Elimination Algorithm for Linear Real Arithmetic.
In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - LPAR, volume 5330 of
LNCS, pages 243–257. Springer, 2008.

M. Moy.
Techniques and tools for the verification of systems-on-a-chip at the transaction
level.
Technical report, INPG, Grenoble, Fr, Dec 2005.

Alexander Schrijver.
Theory of Linear and Integer Programming.
J. Wiley & Sons, 1998.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 82

Bibliography VIII

C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi.
A SystemC/TLM Semantics in Promela and Its Possible Applications.
In D. Bosnacki and S. Edelkamp, editors, SPIN, volume 4595 of LNCS, pages
204–222. Springer, 2007.

L. Waszniowski and Z. Hanzálek.
Formal verification of multitasking applications based on timed automata model.
Real-Time Systems, 38(1):39–65, 2008.

Georg Weissenbacher, Daniel Kroening, and Sharad Malik.
Wolverine: Battling bugs with interpolants - (competition contribution).
In Cormac Flanagan and Barbara König, editors, TACAS, volume 7214 of Lecture
Notes in Computer Science, pages 556–558. Springer, 2012.

Alessandro Cimatti ATVA’13, October 2013, Hanoi, Vietnam 83

	Cooperative Threaded Programs (CTPs)
	Background
	Safe Sequential Programs
	Model Checking of Sequential Programs

	Approaches to Model Checking of CTPs
	Finite-Model for Cooperative Threaded Programs
	Symbolic Model Checking of Sequential Software
	Explicit Scheduler and Symbolic Threads (ESST)

	The Kratos Software Model Checker
	Experimental Results
	Related Work
	Conclusions
	Appendix

